Onze kijk op recente ontwikkelingen in het veld

8e editie

Commit to know.

Develop to grow.

Share to show.

Introductie

Onze ervaren specialisten werken dagelijks mee aan tal van softwareprojecten in Nederland en zijn
betrokken in wereldwijde community’s. Halfjaarlijks komen wij vanuit JDriven bij elkaar om te
bespreken wat wij aan nieuwe trends en ontwikkelingen zien. Deze trends proberen wij te vangen in
een technologieradar. Elke editie van de radar laat verschuivingen zien t.o.v. een vorige editie. Een
verschuiving kan betekenen dat wij een technologie interessanter zien worden waar van toepassing, of
juist minder geschikt ongeacht de toepassing. Indien een trend niet meer voorkomt in een latere editie,
dan zijn er geen nieuwe ontwikkelingen en/of ervaringen die ons eerdere beeld zouden hebben
bijgesteld. In dit document willen we toelichten welke verschuivingen we de afgelopen periode hebben
waargenomen, om op basis daarvan weer richting te geven aan wat wij inzetten en aanraden.

Tech Radar

Het idee voor het opstellen van een Tech Radar komt voort vanuit Thoughtworks. Zij dragen al langer
periodiek met een radar hun visie uit op nieuwe trends en ontwikkelingen. Bovendien raden zij iedereen
aan een eigen radar op te stellen [https://www.thoughtworks.com/radar/byor].

Bij JDriven onderschrijven we dat. Het opstellen van een Radar is een leerzame en waardevolle
ervaring waarin onderling kennis wordt gedeeld en een technisch bewustzijn wordt gecreéerd. Wij
geloven erin dat specialisten zelf in staat moeten zijn om het gereedschap voor hun werkzaamheden
samen te stellen. Met het opstellen van een radar faciliteer je discussies over technologie, om als
organisatie de juiste balans te vinden in wat voor risico’s en voordelen innovatie kan opleveren. Wij
kunnen je helpen dit op te starten binnen je organisatie. Laat je teams elkaar inspireren tot innovatie
en gezamenlijk komen tot een set aan technologie€n en technieken die de ontwikkeling in je bedrijf
versnellen.

Indeling

Een radar bestaat uit kwadranten en ringen, met daarbinnen blips om interessante technologieén en
technieken aan te duiden.

De kwadranten verdelen de verschillende onderwerpen in categorieén.

+ Talen & frameworks die je ondersteunen bij de ontwikkeling van software

+ Platformen waarop je software kunt uitvoeren

« Technieken die je helpen betere software te maken

+ Tools ter ondersteuning van je ontwikkel- en delivery-proces
De ringen in elk kwadrant geven aan in welk stadium van adoptie wij denken dat die technologie zich
bevindt.

+ Adopt - Wij raden sterk aan deze technologie te gebruiken, waar van toepassing.

« Trial - Interessant om alvast ervaring mee op te doen (in een project dat het risico kan dragen).

 Assess - Goed om beter te begrijpen en toekomstige impact in te schatten, maar nog niet om
toe te passen.

+ Hold - Niet (meer) gebruiken.

In de volgende secties zullen we onze kijk op de recente ontwikkelingen per kwadrant toelichten.

© 2023 JDriven Tech Radar: Introductie | 1

Commit. Develop. Share.

N

https://www.thoughtworks.com/radar/byor

Techniques Tools

Hold Assess Trial Adopt Adopt Trial Assess Hold

Languages &
Platforms Frameworks

@ New @ Existing

} © 2023 JDriven Tech Radar: Introductie | 2

Tools

Talen & frameworks

ADOPT
22. k9s
27. Vector Databases

TRIAL

21. Sigrid

23. Testkube

26. ChatGPT

28. Qodana

30. jlink

31. Maven Build Cache Extension

ASSESS

25. Error Prone

29. Thunderdome Dev
32. Konsist

HOLD
19. Docker 4 Desktop
20. Diffblue Cover

ADOPT

3L4. Azure Bicep

36. Structured concurrency
38. Quarkus

TRIAL
37. Langchaintj
4+3. Backstage

ASSESS

35. Service Weaver

39. Jakarta 11

1. Terraform CDK

42. HTMX

Lk, JetBrains Compose

HOLD
40. OpenTofu

24. Lombok
33. JobRunr
Platforms Technieken
ADOPT ADOPT
- 2.DDD

5. Team Topologies
TRIAL 7. Dev Ex

12. Edge Computing
14. Apache Pulsar
18. Cloud events

ASSESS

13. Dapr

15. Moderne platform
16. eBPF

17. Azure Container Apps

HOLD

9. Automatisch mergen van dependency updates
11. Prompt Engineering

TRIAL

1. Al code assist

4. Developer Productivity Engineering
6. Inner Source

10. Unit testing voor alerting

ASSESS
3. GPU Programming
8. Sustainable software engineering

HOLD

© 2023 JDriven

Tech Radar: Introductie | 3

Commit. Develop. Share.

N

Adopt Trial Assess Hold Adopt

34. Azure Bicep
36. Structured concurrency

38. Quarkus

Assess
35. Service Weaver
38. Jakarta 11
41. Terraform CDK
42. HTMX

44, JetBrains Compose

Trial

37 Langchaindj

@ New @ Existing
43. Backstage

Hold

40. OpenTofu

ADOPT

[https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview?tabs=bicep| is een
domeinspecifieke taal (DSL) waarmee ontwikkelaars infrastructuren als code kunnen schrijven voor
Azure-resources. Deze technologie vereenvoudigt het proces van het maken en implementeren van
Azure-resources, door ontwikkelaars in staat te stellen declaratieve code te schrijven die de gewenste
staat van hun infrastructuur definieert. Azure Bicep is een open-sourceproject ontwikkeld door
Microsoft en is gebouwd op de bewezen Azure Resource Manager (ARM) infrastructuur.

Ontwikkelaars gebruiken Azure Bicep om Azure-resources zoals virtuele machines, opslagaccounts en
netwerkinterfaces te beheren. Door Bicep te gebruiken, kunnen ontwikkelaars herbruikbare code-
modules maken die kunnen worden gebruikt in verschillende omgevingen, waardoor de tijd en moeite
die nodig zijn voor infrastructuurimplementatie worden verminderd. Azure Bicep maakt ook
infrastructuurautomatisering mogelijk, waardoor het gemakkelijker wordt om Azure-resources op
schaal te beheren en te onderhouden.

Wij geloven dat als je ervoor kiest om te werken met Infrastructure as Code, Azure Bicep de
standaardkeuze is als je werkt met Azure. De adoptie ervan stelt organisaties in staat hun
infrastructuur-implementatiesnelheid te verbeteren, de betrouwbaarheid te vergroten en het risico op
menselijke fouten te verminderen. Bovendien zorgt de integratie met Azure Resource Manager ervoor
dat Azure Bicep volledig compatibel is met bestaande ARM-templates, waardoor het gemakkelijk is
aan te nemen voor organisaties die al Azure gebruiken. Ook is er een Azure Bicep Visual Studio-
extensie die ontwikkelaars een gestroomlijnde ervaring biedt voor het schrijven van infrastructuren
voor Azure-resources. Met deze extensie kunnen ontwikkelaars profiteren van IntelliSense en syntax
highlighting, waardoor het gemakkelijker wordt om Bicep-code te schrijven, te onderhouden en te
testen. Daarom raden wij aan dat bedrijven Azure Bicep gaan gebruiken om hun Azure-
infrastructuurimplementatieproces te stroomlijnen en hun algehele infrastructuurbeheer te verbeteren.

© 2023 JDriven Tech Radar: Talen & frameworks | 4

https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview?tabs=bicep

Structured concurrency

ADOPT

Structured concurrency is een programmeerparadigma dat een gestructureerde aanpak biedt voor
het parallel uitvoeren van taken. Het introduceert een aantal tools en abstracties om parallel
uitgevoerde code te vereenvoudigen, met als doel de leesbaarheid, onderhoudbaarheid en het
debuggen van code te verbeteren. In tegenstelling tot traditioneel thread management, zorgt
structured concurrency ervoor dat alle gelijktijdige taken expliciet worden gescopet en beheerd,
waardoor het eenvoudiger wordt om te redeneren over hun levenscyclus. Dit paradigma helpt
ontwikkelaars om veelvoorkomende valkuilen van verkeerd thread management zoals resourcelekken
en onvoorspelbaar gedrag te voorkomen, door een meer georganiseerde en deterministische manier te
bieden om met concurrency om te gaan.

Wij raden aan om, waar mogelijk, gebruik te maken van structured concurrency bij het ontwikkelen
van applicaties. In bijvoorbeeld Kotlin raden wij aan om gebruik te maken van Kotlin Coroutines bij
code die baat heeft bij parallele uitvoering. In Java 21 is structured concurrency nog in preview. Toch
raden we aan om deze nieuwe functie alvast uit te proberen en er vertrouwd mee te raken, zodat het
kan worden gebruikt zodra het gereleaset wordt.

Quarkus

ADOPT

Quarkus [https://quarkus.io/] is een fijnwerkend framework voor developers die Context en Dependency
Injection (CDI) en MicroProfile gewend zijn. Volgens hun eigen site is het: "A Kubernetes Native Java
stack tailored for OpendDK HotSpot and GraalVM, crafted from the best of breed Java libraries and
standards." Het is vergelijkbaar met andere frameworks zoals Spring Boot, en is met name geschikt om
serverapplicaties te bouwen.

Quarkus is ontwikkeld om het leven van developers gemakkelijk te maken. Er is weinig configuratie
nodig om ermee te kunnen werken. Het framework biedt ondersteuning om eenvoudig in development-,
test- of productiemodus te draaien. Quarkus gaat efficiént om met geheugen. Met behulp van
extensies is de functionaliteit eenvoudig uit te breiden. Het is een volwassen product geworden
(inmiddels is versie 3 al uit). Quarkus biedt standaard ondersteuning voor het bouwen van Docker
containers, zodat je die in Kubernetes of OpenShift kunt draaien.

Het gebruik van Smallrye Mutiny als Reactive Streams library maakt het mogelijk om imperatieve stijl
naast reactive stijl te laten bestaan. Dit stelt developers in staat om laagdrempelig en stapsgewijs een
applicatie volledig non-blocking te maken.

Testen wordt ook uitgebreid ondersteund. Met de @uar kusTest annotatie kun je gemakkelijk
integratietests opnemen in de build pipeline, waarbij ook test containers worden ondersteund. Het is
ook mogelijk om jouw applicatie lokaal in developer mode te starten. Met de tool Skaffold
[https://skaffold.dev/] (geen standaard onderdeel van Quarkus) kun je daarnaast snel een nieuwe
deployment testen in een lokaal draaiend Kubernetes-cluster (bv. minikube of Rancher Desktop).

Het is zeer geschikt voor HTTP RESTful web development en integreert goed met gangbare message
protocols, authentication protocols, datastores en platforms. Dankzij de rijkelijk aangeklede
handleidingen is het bovendien relatief eenvoudig om Quarkus naar behoefte uit te breiden.

Het maken van native executables is al lang niet meer een onderscheidende factor voor Quarkus,
maar door de brede ondersteuning en uitgebreide documentatie heeft Quarkus ons bewezen een
serieuze speler te zijn in het aanbod van JVM CDI Frameworks. In het afgelopen jaar werd Quarkus bij
diverse klanten succesvol ingezet (0.a. financiéle sector). Hiermee heeft het zich als stabiel framework
bewezen, waarmee Quarkus in deze editie de Adopt status heeft verkregen.

© 2023 JDriven Tech Radar: Talen & frameworks | 5

Commit. Develop. Share.

N

https://quarkus.io/
https://skaffold.dev/

g

TRIAL

[https://github.com/langchaintj/langchainkj] is een framework om eenvoudig applicaties te
ontwikkelen met Al large language models (LLM).

Deze LLM’s kunnen verscheidene taken met betrekking tot natuurlijke taalverwerking uitvoeren, zoals
vertalingen maken en content samenvatten. Ze kunnen ook generatieve taken als contentcreatie
uitvoeren en zijn ook extreem nuttig om vragen te beantwoorden.

Met dit framework kunnen LLM-providers eenvoudig worden uitgewisseld omdat er een abstractielaag
tussen zit. Implementaties voor OpenAl GPT-4, Azure OpenAl en Google Vertex Al zijn beschikbaar, en
ook lokale modellen kunnen gebruikt worden met [https://ollama.ai/]. Het is een tegenhanger
van de [https://www.langchain.com/] library voor Python en Javascript. De Java-
implementatie is volop in ontwikkeling en er komen steeds nieuwe functies bij.

Indien je een Java-applicatie wilt uitbreiden met Al-functies, dan is het bekijken van dit framework de
moeite waard. Er kan dan ook eenvoudig gewisseld worden tussen en getest worden met verschillende
modellen.

Wij bij JDriven geloven dat de abstractielaag van dit framework leidt tot flexibelere software zonder
"vendor lock-in", wat een voordeel is, gezien het feit dat alle features en modellen nog volop in
beweging zijn. Als er bijvoorbeeld wegens privacy of betere resultaten van model gewisseld moet
worden, is dit eenvoudig te realiseren.

TRIAL

[https://backstage.io/] is een open source developer portal. Het is door Spotify gemaakt en
gedoneerd aan de Cloud Native Computing Foundation (CNCF). Het is in 2020 gepubliceerd en is dus
een relatief nieuw platform.

Het doel van Backstage is het bieden van een centrale plek voor software, tooling en documentatie.
Het biedt daarbij de mogelijkheid om templates te schrijven, waarmee snel een nieuw project is op te
starten.

Backstage heeft veel integraties en plugins voor verschillende tools om dit doel te realiseren. De sterke
punten van Backstage komen het beste naar voren als het bij grote projecten wordt gebruikt.

Voorbeelden van grote bedrijven die Backstage gebruiken:

* LinkedIn
» Vodafone
* Lego

» Siemens

Backstage staat in Trial, want het nut van een developer portal is niet altijd duidelijk en kan verschillen
per project. De cultuur en omvang van een bedrijf zijn belangrijke factoren.

© 2023 JDriven Tech Radar: Talen & frameworks | 6

https://github.com/langchain4j/langchain4j
https://ollama.ai/
https://www.langchain.com/
https://backstage.io/

Service Weaver

ASSESS

Service Weaver [https://opensource.googleblog.com/2023/03/introducing-service-weaver-framework-for-writing-
distributed-applications.html] is een framework voor het ontwikkelen van gedistribueerde applicaties. Het
is ontworpen om ontwikkelaars te helpen bij het bouwen van complexe systemen die gebruikmaken
van een gedistribueerde architectuur.

Service Weaver omvat een reeks abstracties en patronen die de definitie, communicatie en
samenwerking van services mogelijk maken. Door een gedecentraliseerde aanpak te hanteren, kunnen
services autonoom werken en communiceren via asynchrone berichten.

Service Weaver is een nieuw Framework dat veel potentieel biedt bij de ontwikkeling van
gedistribueerde applicaties. Daarom is Service Weaver geplaatst in het Assess kwadrant van deze
editie van onze Tech Radar.

Jakarta 11

ASSESS

Jakarta 11 [https://jakarta.ee/specifications/platform/11/] is de nieuwste (aankomende) versie van Jakarta
EE. Deze nieuwste versie heeft een aantal interessante features zoals Virtual Threads en Jakarta Data
(vergelijkbaar met Spring Data). Het ondersteunt alleen Java 21 en het verwijdert een aantal oude
specificaties. Dit alles zorgt ervoor dat dit een interessante versie van Jakarta EE wordt wat het
volgens ons de moeite waard maakt om te beoordelen.

Terraform CDK

ASSESS

Terraform maakt gebruik van HashiCorp Configuration Language (HCL) om op een cloudagnostische
wijze de infrastructuur van een applicatie te beheren. HCL is een declaratieve taal om cloudresources
te beschrijven. Echter betekent het gebruik hiervan dat developers een nieuwe taal moeten leren om
met deze tooling overweg te kunnen. Door gebruik te maken van CDK for Terraform (CDKTF) kan men
nu ook aan de slag met Java, C#, Python, TypeScript of Go voor het beheren van infrastructuur.

CDKTF verdient een plekje op de Tech Radar omdat Terraform onderhand een bewezen technologie is,
waar deze toevoeging een aantal voordelen biedt ten opzichte van de conventionele aanpak. Zo krijgt
men code completion en IDE-support cadeau, integreert de infrastructuurdefinitie beter met
bestaande tooling zoals codeformatters en linters, en wordt het laagdrempeliger voor developers om
Terraform te gaan gebruiken in hun projecten.

Op 21 augustus 2022 heeft HashiCorp de tooling als 'production ready' aangemerkt, met de
kanttekening dat de tooling nieuw is en daarom nog niet volledig volwassen. Daarnaast is de
documentatie omtrent bepaalde onderwerpen benedenmaats, en introduceert de CDK een aantal
nieuwe concepten en dus wat extra complexiteit. Al met al een interessante ontwikkeling om in de
gaten te houden, zeker als Terraform al gebruikt of overwogen wordt.

© 2023 JDriven Tech Radar: Talen & frameworks | 7

Commit. Develop. Share.

N

https://opensource.googleblog.com/2023/03/introducing-service-weaver-framework-for-writing-distributed-applications.html
https://jakarta.ee/specifications/platform/11/

ASSESS

htmx is een JavaScript-library gericht op het bouwen van een

[https://hypermedia.systems/hypermedia-systems/] (HDA). HDA en htmx zijn een reactie op de zware Single
Page Application JavaScript-frameworks als React en Angular, en leggen de aandacht terug op de
kracht van HTTP, HTML, hyperlinks en REST, samengevat als hypermedia architecture. De opkomst van
SPA’s kan verklaard worden door het feit dat het moeilijk was om in web 1.0 vlotte Ul-overgangen en
interactiviteit te bouwen zonder trage en merkbare page reloads. HTML biedt nog altijd slechts 2 HTTP
methods (GET en POST) en 2 HTML-elementen (anchor en form) voor interactiviteit met server content.

De oplossing, die SPA-frameworks voor dit gebrek aan HTML-interactiviteit hebben geintroduceerd,
heeft echter wat nadelen: ze verandert RESTful backend-API’s in data-API’s die JSON serveren, maakt
JavaScript leidend om HTML te tonen, en introduceert een complexe frontend-architectuur leunend op
vele JavaScript-libraries voor schijnbaar eenvoudige zaken zoals URLs, web content indexering (SEO),
de back button, caching, progressive enhancement en loose coupling. htmx gebruikt JavaScript om de
bovengenoemde tekortkomingen van HTML te adresseren, om daarna uit de weg te gaan en websites
weer hypermedia-gedreven te kunnen maken, en daarmee de tekortkomingen van SPA’s te vermijden.

We zien een toename van interesse in htmx en HDA onder full-stack developers, en zelfs onder frontend
developers die hun carriére begonnen zijn met het toepassen van SPA-frameworks en de genoemde
problemen herkennen. JDriven adviseert om bij het opzetten van een frontend-architectuur te kijken of
een SPA-architectuur wel de beste oplossing is, of dat HDA en htmx een goede fit zouden kunnen zijn.
Let daarbij op de toepasbaarheid van tools in het frontend-ecosysteem zoals design systems, Tailwind
CSS en Playwright. Omdat htmx in feite een terugkeer naar serverside rendering is, is het ook
belangrijk om de ontwikkelingen op het gebied van Edge Computing, die ook spelen op het gebied van
SPA’s, mee te nemen in de overweging.

ASSESS

JetBrains zet met Compose Multiplatform in op het ontwikkelen van businessfunctionaliteit in één
codebase, met een op diverse platforms toegespitste Ul. Het combineert de krachten van Jetpack
Compose en Kotlin Multiplatform om ontwikkeling voor servers, Android, iOS, web (via Kotlin/Wasm),
en desktop (Linux, macOS, Windows) vanuit een enkele codebase mogelijk te maken.

Voor developers die reeds bekend zijn met de wereld van Kotlin en/of Android development, is
Compose Multiplatform veelbelovend. Het biedt de mogelijkheid om business logic en Ul-code
bruikbaar te maken voor alle genoemde platforms. De vraag blijft altijd, of de effectiviteit van het
werken met één codebase opweegt tegen de extra lagen van abstractie, die nodig zijn om te komen tot
een grote gemene deler in de code. Ook is het zo, dat de iOS-functionaliteit nog in alpha-fase is, en
Kotlin/Wasm voor web nog experimenteel. Maar het biedt een interessante optie voor organisaties die
willen investeren in business logic, een homogene developer skillset en een uniforme Ul over meerdere
platforms.

© 2023 JDriven Tech Radar: Talen & frameworks | 8

https://hypermedia.systems/hypermedia-systems/

OpenTofu

HOLD

HashiCorp heeft de sourcecode-licentie van zijn producten, zoals Terraform, aangepast naar een
Business Source License [https://www.hashicorp.com/bsl]. Dat heeft onder gebruikers van Terraform geleid
tot zorgen, dat het omringende ecosysteem van tools daaronder gaat lijden. Op 23 augustus 2023 is
er een fork gemaakt van Terraform, genaamd OpenTofu. Het doel is om dit als opensourceproject te
laten voortbestaan onder beheer van de Linux Foundation.

Nadere inspectie van de uitleg [https://www.hashicorp.com/license-faq] van HashiCorp over deze
licentievoorwaarden wijst echter uit, dat de wijziging naar een BSL alleen bedrijven treft, die
commerciéle producten maken die concurreren met HashiCorp’s producten, door gebruik te maken
van HashiCorp’s eigen producten. Dat is voor de grootste groep gebruikers van Terraform niet van
toepassing. Daarom zien wij voor hen geen reden om uit te wijken naar een alternatief voor Terraform
zoals OpenTofu, wat we daarom op Hold plaatsen.

Commit. Develop. Share.

© 2023 JDriven Tech Radar: Talen & frameworks | 9

N

https://www.hashicorp.com/bsl
https://www.hashicorp.com/license-faq

Trial
1. Al code assist
4. Developer Productivity Engineering
6. Inner Source e

10. Unit testing voor alerting

Adopt
2.DDD
5. Team Topologies
7. Dev Ex
9. Automatic merging of dependency updates

1. Prompt Engineering

Hold Assess Trial Adopt
Assess
@ New @ Existing
3. GPU Programming

8. Sustainable software engineering

ADOPT

Domain Driven Design (DDD) is een techniek die onderverdeeld kan worden in strategisch en tactisch
ontwerp. Het eerste biedt manieren om een probleemdomein te benaderen en bounded contexts en
hun onderlinge afhankelijkheden te identificeren, alsmede een ubiquitous language. Het tweede biedt
manieren en building blocks om deze bounded contexts te modelleren en implementeren.

Alhoewel DDD als een concept reeds 20 jaar oud is, zien we dat het recentelijk weer in de
schijnwerpers staat. Tools voor CORS, Event Sourcing en message-driven architectures bestaan al en
blijven doorontwikkeld worden, en technieken zoals event storming en domain storytelling worden
vaker gebruikt. Maar belangrijker nog, is dat architecten en developers ondervinden dat de overstap
van monolieten naar microservices hun problemen soms heeft verergerd; in het bijzonder wanneer
bounded contexts en de afhankelijkheden daartussen onvoldoende zijn gemodelleerd en begrepen. Zij
grijpen nu naar DDD voor hulp.

ADOPT

[https://tedmtopologies.com/keg—concepts] is een praktisch model voor organisatorisch
ontwerp en teaminteractie, gebaseerd op vier fundamentele teamtypes en drie interactiepatronen.
Het is een model dat teams ziet als de basis van delivery, en dat teamstructuren en
communicatielijnen laat groeien met technologische en organisatorische volwassenheid. Team
Topologies biedt een duidelijke manier voor teams om met elkaar samen te werken, teneinde de
resulterende softwarearchitectuur helderder en beter onderhoudbaar te maken. Daarbij interpreteert
het problemen tussen teams als waardevolle signalen die kunnen helpen bij een zelfsturende
organisatie.

Team Topologies benadrukt het optimaliseren van teaminteractie, en vult daarmee het strategisch

© 2023 JDriven Tech Radar: Techniques | 10

https://teamtopologies.com/key-concepts

ontwerp van Domain Driven Design aan bij het in kaart brengen van interactie tussen
softwaresystemen. In combinatie met het bewustzijn van Conway’s Law en team cognitive load, helpt
dit bij het produceren van architecturen die onderhouden kunnen worden door een organisatie.

Dev Ex

ADOPT

DevEx, afgeleid van Developer Experience, is een cruciaal facet van softwareontwikkeling dat de
algemene ervaring van ontwikkelaars tijdens het werken aan een project of in een specifieke
ontwikkelingsomgeving omvat. Het is gericht op de bruikbaarheid van ontwikkelingstools, efficiénte
workflows, duidelijke documentatie, en de tevredenheid en productiviteit van ontwikkelaars.

Binnen de context van softwareontwikkeling is DevEx de sleutel tot het optimaliseren van processen en
het bevorderen van een positieve werkomgeving voor ontwikkelaars. Door te zorgen voor intuitieve
tools, gestroomlijnde workflows en effectieve ondersteuning, draagt het bij aan het versnellen van
ontwikkelingscycli en het leveren van hoogwaardige softwareproducten. Het is de brug die
ontwikkelaars verbindt met de mogelijkheden van technologie, en het stimuleert innovatie in de
dynamische wereld van softwareontwikkeling.

Automatisch mergen van dependency updates

ADOPT

Het automatisch mergen van dependency updates is vandaag de dag steeds belangrijker aan het
worden. Tegenwoordig komt het steeds vaker voor dat kwetsbaarheden ontdekt worden die meekomen
met dependencies in projecten. Wij vinden dat het automatisch updaten en mergen van de
desbetreffende dependencies de juiste manier is, zodat code zo up-to-date mogelijk blijft.

Enkele tools die het automatisch mergen van de dependency updates mogelijk maken zijn onder
andere Renovate [https://github.com/renovatebot/renovate] en Dependabot [https://github.com/dependabot/
dependabot-core]. Wat deze in essentie doen is het continu scannen van de dependencies in het project
en hier merge requests voor aanmaken indien er updates beschikbaar zijn. Ontwikkelaars kunnen deze
merge requests handmatig of automatisch mergen.

JDriven kiest ervoor om deze techniek op te nemen in de Tech Radar en in Adopt te plaatsen, omdat
het teams efficiént laat werken door het bijhouden van dependency versies (deels) te automatiseren,
wat leidt tot kwalitatieve en veilige software.

Prompt Engineering

ADOPT

Prompt engineering is een discipline die draait om het vormgeven van nauwkeurige, effectieve
aanwijzingen voor door Al aangedreven modellen, zoals GPT-X (Generative Pre-trained Transformer).
Deze aanwijzingen sturen de reacties van het Al-model in de richting van het gewenste resultaat. Het is
een proces dat experimenteren, iteratie, verificatie en afstemming omvat. Prompt engineering biedt
verschillende voordelen die het potentieel hebben om software-engineering te verbeteren:

+ Versnelde Ontwikkeling

* Verbeterde Creativiteit

» Consistentie en Betrouwbaarheid

» Leren en Groeien

Prompt engineering stimuleert een cultuur van continu leren en groeien. Ontwikkelaars kunnen

© 2023 JDriven Tech Radar: Techniques | 11

Commit. Develop. Share.

N

https://github.com/renovatebot/renovate
https://github.com/dependabot/dependabot-core

g

modelreacties analyseren, hun aanwijzingen aanpassen en hiervan leren. Het verstrekken van deze
inzichten aan de makers van het Al-model kan resulteren in geoptimaliseerde modellen die betere en
robuustere resultaten opleveren. Hoewel het gebruik van Al-modellen snelle resultaten kan opleveren,
vereist het behalen van hoogwaardige resultaten een investering van tijd, moeite en het verwerven van
nieuwe vaardigheden.

TRIAL

Een Al-codeassistent is een tool die gebruik maakt van machine learning-algoritmen en statistische
modellen om code te voorspellen. Het helpt ontwikkelaars bij het schrijven van code door suggesties te
doen voor het voltooien van codefragmenten, het corrigeren van fouten en het geven van
aanbevelingen voor optimalisatie. Tevens kan er gebruik gemaakt worden van prompt-based
engineering, waar met natuurlijke taal code wordt gegeneerd.

Als ontwikkelaar kun je een Al-codeassistent gebruiken door deze te integreren als plugin in je IDE
(Integrated Development Environment). Hierdoor krijg je tijdens het typen van de code direct
suggesties en correcties aangeboden, waardoor je productiever en efficiénter kunt werken. Bovendien
kan een Al-codeassistent je helpen om nieuwe talen en frameworks sneller te leren, doordat het
suggesties doet op basis van best practices en veelgebruikte patronen.

Op dit moment bevinden de Al-codeassistenten zich nog in de kinderschoenen. Zo hebben Al-
codeassistenten weinig kennis van specifieke domeinen, genereren ze mogelijk foute code en kan het
eigendomsrecht ook een probleem zijn. Wij geloven echter, dat ondanks deze reéle bezwaren, binnen
vijf jaar de Al-code assists mainstream zullen worden in software ontwikkeling. Tools als
[https://www.tabnine.com], [https://github.com/features/copilot/],
[https://www.machinet.net] en [https://visualstudio.microsoft.com/services/intellicode/] strijden om de
aandacht. De vraag is dan ook niet of je dit als ontwikkelaar gaat gebruiken, maar wanneer. Wij raden
daarom aan om dergelijke tooling nu te onderzoeken, zodat wanneer Al-codeassistenten volwassen
zijn, het meteen voor je productiecode gebruikt kan worden.

TRIAL

[https://gradle.com/developer-productivity-engineering/] is een tak
van software engineering die zich richt op het verbeteren van de efficiéntie en productiviteit van
ontwikkelaars op basis van meetbare data. DPE richt zich op het ontwerpen en bouwen van tools,
processen en infrastructuren die de workflow van ontwikkelaars kunnen stroomlijnen en hun
ontwikkelingscyclus kunnen versnellen. DPE omvat een breed scala aan activiteiten, zoals bijvoorbeeld
het ontwerpen en implementeren van geautomatiseerde testsystemen en het optimaliseren van de
build- en deploy-processen om de feedback loop te verkorten. Doordat het optimaliseren gedaan
wordt op basis van meetbare data kan dit team bewijzen hoeveel tijd door hun activiteiten wordt
bespaard.

Gradle is dit op het moment in de markt aan het brengen en vooral voor grotere bedrijven is dit een

interessante trend om te volgen. Doordat het op meetbare resultaten is gebaseerd en het op
verschillende niveaus kan worden geimplementeerd, vinden we het geschikt om het op Adopt te zetten.

© 2023 JDriven Tech Radar: Techniques | 12

https://www.tabnine.com
https://github.com/features/copilot/
https://www.machinet.net
https://visualstudio.microsoft.com/services/intellicode/
https://gradle.com/developer-productivity-engineering/

Inner Source

TRIAL

Inner source verwijst naar het toepassen van open source principes binnen een organisatie. Het gaat
erom de samenwerkende, transparante en gedecentraliseerde aanpak die vaak wordt gezien in open
source projecten toe te passen op de interne softwareontwikkeling van de organisatie. Het is een
alternatief op closed source, waarbij normaliter repositories enkel beschikbaar zijn voor het
verantwoordelijke team.

In een omgeving waar inner source wordt toegepast, zijn teams in staat binnen het bedrijf openlijk
code repositories in te zien. Dit bevordert het samenwerken, verbetert de codeanalyse, en geeft de
mogelijkheid voor het bijdragen van codewijzigingen via Pull Requests over verschillende projecten
heen. Het bevordert een grotere transparantie, stimuleert kennisdeling en stelt ontwikkelaars in staat
om over teams en afdelingen heen te werken.

Dit model kan de kwaliteit van software verbeteren, de ontwikkeling versnellen en een cultuur van
samenwerking en innovatie binnen de organisatie bevorderen door gebruik te maken van de
gezamenlijke expertise en inspanningen.

JDriven staat voor commit, develop, share met de opensourceprincipes in gedachten. Daarom vinden
wij dat organisaties moeten overwegen de broncode open te stellen voor interne ontwikkelaars.

Unit testing voor alerting

TRIAL

Binnen het domein van software-observability en -monitoring is het opzetten van robuuste
alertmechanismen cruciaal. De onvoorspelbaarheid van events vereist nauwkeurige en responsieve
alerts, vaak gebouwd op complexe regels. Echter, de validatie van deze regels voltrekt zich vaak pas in
productie wanneer er onverwachts echte situaties voordoen.

De techniek 'unit testing voor alering' is ontworpen om de precisie van de regels en alerts te verhogen
door proactieve evaluatie en verfijning. Deze aanpak stelt teams in staat om regels grondig te
definiéren en te valideren voordat ze live getriggerd worden door incidenten. Dit verhoogt het
vertrouwen in de regels en alerts aanzienlijk.

Het primaire doel heeft een dubbele functie: het verminderen van valse alarmen en ervoor zorgen dat
echte problemen snel en nauwkeurig worden benadrukt. Door verschillende scenario’s en
omstandigheden te simuleren, kunnen teams beoordelen hoe goed hun rules presteren en deze
verfijnen voor optimale responsiviteit.

Belangrijke tools zoals Prometheus bieden speciale ondersteuning voor het testen van rules. Door deze
preventief te valideren, hebben we een aanzienlijke afname van valse positieven. Hierdoor is een
snellere en nauwkeurigere reactie op echte problemen mogelijk.

JDriven is van mening dat teams en organisaties die met rules en alerts werken, zouden moeten
beginnen met het toevoegen van unit tests voor alerts.

© 2023 JDriven Tech Radar: Techniques | 13

Commit. Develop. Share.

N

ASSESS

General purpose programming on graphics processing units (GPU) is een techniek waarmee
generieke programma’s op een GPU kunnen worden uitgevoerd. Deze techniek wordt veelal gebruikt
voor toepassingen die veel verwerkingskracht nodig hebben, zoals machine learning, data-analyse en
complexe wetenschappelijke en financiéle simulaties. Oorspronkelijk zijn GPU’s ontworpen voor het
verwerken en renderen van computer graphics, maar GPU’s bieden grote snelheidsvoordelen voor alle
type toepassingen die een grote mate van parallelle verwerking toestaan.

We hebben GPU-programmering geselecteerd voor deze editie van onze Tech Radar, omdat het snel
populairder wordt binnen verschillende sectoren. De hogere verwerkingssnelheid kan taken, waarvoor
eerder niet de tijd beschikbaar was om op het resultaat te wachten, binnen bereik brengen. De
specifieke architectuur van deze processoren maakt het echter ingewikkeld om software te
ontwikkelen. De veelgebruikte GPGPU-programmeertalen CUDA en OpenCL zijn bovendien
geinspireerd op C en redelijk low-level. Om effectieve code te schrijven, veronderstellen deze talen een
gedegen kennis van het GPGPU-platform. Hierdoor is het nog steeds te vroeg voor universele adoptie
binnen de industrie.

Desondanks geloven we dat, zelfs voor Java-ontwikkelaars, GPU-programmeren blijft groeien in
belang. Een mooi voorbeeld is onder andere de snelle opkomst van Large Language Models (LLM’s),
zoals ChatGPT. Deze zijn sterk afhankelijk van GPU’s om een gebruiker binnen een acceptabele tijd
van een antwoord te voorzien.

Tot slot is GPU-programmeren een krachtige technologie die de manier waarop we gegevens
verwerken en analyseren transformeert.

Naarmate GPU’s blijven evolueren en toegankelijker worden, kunnen we in de toekomst nog meer
wijdverspreide adoptie van deze technologie verwachten.

Voor nu raden we bedrijven aan om te beoordelen of er taken en/of services zijn die kunnen profiteren
van de GPU en hiermee nieuwe diensten te kunnen aanbieden.

ASSESS

Groene software is een opkomende discipline op het snijvlak van klimaatwetenschap,
softwareontwerp, elektriciteitsmarkten, hardware en datacenterontwerp. Groene software is CO,
-efficiénte software, wat betekent dat het zo min mogelijk CO, uitstoot. Slechts drie activiteiten
verminderen de CO,-uitstoot van software; energie-efficiéntie, koolstofbewustzijn en hardware-
efficiéntie.

Een softwarearchitectuur die rekening houdt met koolstofefficiéntie is er één waarin ontwerp- en
infrastructuurkeuzes zijn gemaakt om het energieverbruik en dus de koolstofuitstoot te minimaliseren.
De meetinstrumenten en het advies op dit gebied worden steeds volwassener, waardoor het voor
teams haalbaar wordt om COj-efficiéntie te overwegen naast andere factoren zoals prestaties,
schaalbaarheid, financiéle kosten en veiligheid.

De cloud heeft nu een grotere ecologische voetafdruk dan de luchtvaartsector. Wij vinden dat we als
software engineers en architecten ook een verantwoordelijkheid hebben in het verminderen van deze
voetafdruk en het verbeteren van het klimaat. Door hierin bewuste keuzes te maken, kunnen we die
stappen ook zetten. Daarnaast hebben efficiénte systemen een bijkomend voordeel: minder resources
zorgt voor minder kosten.

© 2023 JDriven Tech Radar: Techniques | 14

Platforms

Trial Hold Assess Trial Adopt
12. Edge Computing v
14. Apache Pulsar v
18. Cloud events v
Assess
13. Dapr v
15. Moderne Platform v
16. eBPF v
17. Azure container apps v

@ New @ Existing

Edge Computing
TRIAL

Edge computing brengt rekenkracht en dataopslag dichter bij de eindgebruiker, die daardoor snellere
berekeningen en responsetijden mag verwachten. Dit is vergelijkbaar met hoe content delivery
networks de performance van statische websites verbeteren. Recentelijk hebben diverse cloud
providers edge functions aan hun edge nodes toegevoegd. Edge functions introduceren de optie om
bepaalde functionaliteit van de client te verplaatsen naar deze edge nodes.

Vendors zoals Netlify, AWS en Vercel zijn hun portfolio rondom edge functions en bijbehorende
middleware aan het uitbreiden. Vanuit de frontend bezien is er nu een plek dichter bij de client, die een
deel van de server side rendering kan verzorgen. Dit heeft het voordeel van snelheid, maar het
introduceert ook het beveiligingsrisico van meer contactpunten in je architectuur, en kan een toename
van complexiteit van je architectuur betekenen. Dientengevolge zien we potentie en risico’s, wat het
rechtvaardigt om met deze nieuwe oplossingen te experimenteren op het punt tussen Single Page
Application (SPA) frameworks en de backend.

© 2023 JDriven Tech Radar: Platforms | 15

Commit. Develop. Share.

N

TRIAL

[https://pulsar.apache.org/] is een open-source gedistribueerd pub/sub-
messagingsysteem dat een hoge mate van schaalbaarheid, betrouwbaarheid en prestaties biedt.
Vergelijkbaar met Apache Kafka en RabbitMQ biedt Pulsar een manier voor applicaties om met elkaar
te communiceren door berichten uit te wisselen via een broker.

Pulsar heeft echter enkele verschillen in vergelijking met Kafka en RabbitMQ. Een van de belangrijkste
voordelen van Pulsar is de mogelijkheid om zowel een queue- als pub/sub-model te ondersteunen in
één systeem, wat flexibiliteit biedt voor verschillende typen berichtenverkeer. Pulsar biedt ook
geavanceerde functies zoals dynamische partitionering, wat zorgt voor betere load balancing en
resourcegebruik in gedistribueerde omgevingen.

In termen van schaalbaarheid is de architectuur van Pulsar ontworpen om miljoenen berichten per
seconde te verwerken met lage latentie en hoge doorvoer, waardoor het een goede keuze is voor real-
time streamingtoepassingen. Pulsar heeft ook een ingebouwd gelaagd opslagsysteem waarmee
gegevens efficiént kunnen worden bewaard en opgehaald.

Hoewel Apache Kafka en RabbitMQ hun eigen sterke punten en gebruiksmogelijkheden hebben, is
Apache Pulsar een aantrekkelijke optie voor bedrijven die op zoek zijn naar een zeer schaalbaar,
duurzaam en flexibel berichtensysteem dat zowel queue- als pub/sub-berichtensystemen aankan.

Bij JDriven zien we dat steeds meer klanten experimenteren met Apache Pulsar. Gezien
bovengenoemde voordelen hebben wij Pulsar op Trial gezet. Voor nieuwe landschappen kan Apache
Pulsar een interessant alteratief voor Kafka of RabbitMQ zijn. Wanneer er geen problemen zijn op
bestaande platforms zie wij echter nog geen redenen om deze te migreren naar Pulsar.

TRIAL

[https://cloudevents.io/] is een open standaard die is ontwikkeld om de compatibiliteit en
samenwerking tussen event-gedreven systemen in de cloud te verbeteren. Het biedt een uniforme
manier om events te specificeren, ongeacht de verschillende cloudplatformen, services of systemen
die betrokken zijn. Deze standaardisatie stelt organisaties in staat om events te beschrijven in een
formaat dat door verschillende cloudproviders kan worden begrepen en verwerkt, waardoor de
complexiteit van event-verwerking tussen systemen wordt verminderd.

Cloud Events zijn gebaseerd op een set van metadata en standaardformaten voor events beschreven
in JSON of YAML. De metadata van Cloud Events biedt een consistente en gestructureerde manier om
informatie over events vast te leggen. Dit omvat details zoals de identificatie van het event, de tijd
waarop het plaatsvond en de bron waar het event vandaan komt. Daarnaast biedt Cloud Events de
mogelijkheid om zelf optionele metadatavelden naast de standaard metadatavelden vast te leggen.

Cloud Events biedt flexibiliteit en draagbaarheid door een gemeenschappelijke taal te bieden voor het
beschrijven van gebeurtenissen, ongeacht de onderliggende technologieén, protocollen en
infrastructuur. De voordelen van het implementeren van Cloud Events zijn onder meer een verbeterde
interoperabiliteit, verhoogde flexibiliteit en vereenvoudigde integratie tussen verschillende
cloudservices en applicaties. Dit stelt ontwikkelaars in staat om gebeurtenisgestuurde architecturen te
bouwen die gemakkelijk schaalbaar, flexibel en onderling uitwisselbaar zijn in verschillende
cloudomgevingen.

JDriven zet Cloud Events op Trial omdat wij denken dat het het onderzoeken waard is voor met name
grote enterprise-omgevingen, die baat hebben bij een bredere standaard.

© 2023 JDriven Tech Radar: Platforms | 16

https://pulsar.apache.org/
https://cloudevents.io/

Dapr
ASSESS

Dapr [https://daprio/] (Distributed Application Runtime) is een door Microsoft ontwikkeld platform dat
de connectiviteit van microservices vereenvoudigt. Het biedt een abstractielaag over technieken die
vaak in elke microservice moeten worden geimplementeerd. Denk hierbij aan pub/sub-messaging,
state management, secrets management, configuratie, tracing en logging. Dapr draait in een sidecar
naast de microservice. De microservice communiceert vervolgens met de sidecar via een SDK die
beschikbaar is voor o.a. Java, .NET, Python, Javascript en Rust. Wij hebben Dapr opgenomen in het
Assess kwadrant van deze editie van de Tech Radar omdat het de ontwikkeling van een
microservicelandschap sterk vereenvoudigt. Een nadeel dat wij zien is dat het waarschijnlijk lastig
weer uit een applicatie te krijgen is.

Moderne platform

ASSESS

Het Moderne Platform is een SaaS-oplossing gebouwd bovenop de open-source software
OpenRewrite. Het biedt geautomatiseerde code-refactoringstools waarmee ontwikkelaars met een
eenvoudige klik of CLl-opdracht snel en moeiteloos complete codebases kunnen migreren. Dit wordt
gedaan met behulp van meegeleverde recepten die bijvoorbeeld Spring Boot-apps kunnen upgraden
van versie 2 naar 3.

In onze Tech Radar hebben we eerder OpenRewrite genoemd. Een SaaS-platform dat de sterke punten
van OpenRewrite combineert met tools om de ervaring van ontwikkelaars rond het gebruik van
OpenRewrite te verbeteren, is iets waar we positief tegenover staan. Concurrenten zoals Snyk,
Dependabot en Sonar waarschuwen alleen voor softwarekwetsbaarheden en bevindingen. Wat het
Moderne Platform voor ons vooral interessant maakt, is dat het deze problemen ook onmiddellijk
oplost, waardoor ontwikkelaarstijd vrijkomt.

Vanwege onze beperkte ervaring met het Moderne Platform zijn we nog niet zeker of het geschikt is
voor missiekritieke toepassingen. Wanneer de CLI niet wordt gebruikt, maakt een Moderne-agent
verbinding met in-house code- en artefactopslagplaatsen, wat voor sommige organisaties een
obstakel kan zijn. Bovendien hangt de effectiviteit van het platform af van het aantal recepten en de
taalondersteuning die ze hebben, iets waar ze momenteel hard aan werken om uit te breiden.

© 2023 JDriven Tech Radar: Platforms | 17

Commit. Develop. Share.

N

https://dapr.io/

g

ASSESS

eBPF (extended Berkeley Packet Filter) is een techniek om programma’s in een sandbox binnen de
Linux-kernel te draaien, door middel van een Just-in-Time compiler. Dit stelt gebruikers in staat om
programma’s te schrijven die systeem- en netwerkgedrag observeren en filteren, of extra
veiligheidsmaatregelen toepassen, zonder restricties op systeemtoegang. De JIT-compiler zorgt ervoor
dat de programma’s niet buiten de geprogrammeerde context kunnen opereren. Bovendien verifieert
de compiler bepaalde eigenschappen voor veiligheid en "liveness" voordat een eBPF-programma
wordt uitgevoerd. Traditioneel wordt dergelijke aangepaste kernelfunctionaliteit verkregen door het
schrijven van custom patches voor de Linux-kernel, of het schrijven van kernelmodules. Het nadeel van
deze methoden is dat dit erg bewerkelijk is en de stabiliteit van het gehele besturingssyteem in gevaar
kan brengen. Bovendien is de in-kernel APl van Linux niet stabiel, waardoor dergelijke aanpassingen
vaak voor een beperkt aantal kernelversies werken. Daardoor is frequent onderhoud en een grote
kennis van de kernel nodig.

We hebben er dit najaar voor gekozen deze techniek op Assess te zetten. eBPF lost een beperkte klasse
van problemen op, met name voor organisaties die een grote hoeveelheid infrastructuur beheren of
speciale eisen aan veiligheid stellen. Ook vereist het schrijven van dergelijke programma’s veel
specialistische kennis. Een gebruiker heeft daarnaast specifieke rechten op een doelsysteem nodig, en
een Linux-kernel waarbij de JIT-functionaliteit beschikbaar is gemaakt. Deze functionaliteit is daardoor
meestal alleen beschikbaar voor organisaties die hun eigen systemen beheren; publieke
cloudproviders zullen deze functionaliteit veelal uitgeschakeld hebben voor gebruikers om hun eigen
infrastructuur te beschermen.

ASSESS

Azure Container Apps is een nieuwe service op Microsoft Azure die het inzetten en schalen van
containerized applicaties in een serverless omgeving vereenvoudigt. Het is gepositioneerd tussen Azure
App Service, dat vooral gericht is op eenvoudige webapplicaties, en Azure Kubernetes Service, wat een
beheerd Kubernetes-platform is.

Container Apps is gebouwd op Kubernetes, KEDA en Dapr. Hierdoor maakt het event-driven
applicatiearchitecturen mogelijk door ondersteuning van geavanceerde autoscaling (inclusief scale-
to-zero en traffic splitting), ondersteuning voor langlopende processen en achtergrondtaken. Er is
geen directe toegang tot de Kubernetes API’s beschikbaar.

Wij denken dat Azure Container Apps een goed alternatief is voor teams die Azure App Service

ontgroeid zijn, maar niet hun eigen Kubernetes-cluster willen of hoeven te beheren. Daarom plaatsen
wij Azure Container Apps in Assess.

© 2023 JDriven Tech Radar: Platforms | 18

Hold
19. Docker 4 Desktop v
20. Lombok v
24, Diffblue Cover v
33. JobRunr w
Trial
21. Sigrid v
23. Testkube v
26. ChatGPT v
28. Qodana v
@ 30. jlink v
1 31. Maven Build Cache Extension v
Adopt Trial Assess Hold
@ New @ Existing
Adopt
22.k9s v
27. Vector Databases v
Assess

25. Error Prone
29. Thunderdome Dev

32. Konsist

k9s

ADOPT

k9s [https://k9scliio/] is een product om Kubernetes-clusters te beheren via de commandline. Het geeft
je de mogelijkheid om zowel je cluster te beheren als real-time inzicht te krijgen in de status van het
cluster. Dit kan door middel van het inzien van logbestanden, het wijzigen van deployments en ook
verbinding maken met de pods. k9s is een gratis alternatief voor Lens Desktop [https://k8slens.dev/
desktop.html] dat inmiddels een commercieel product is geworden, waarvoor de overgangsperiode in
januari 2023 is afgelopen. Gezien k9s dezelfde functionaliteit biedt als Lens Desktop, plaatsen wij het
op Adopt.

© 2023 JDriven Tech Radar: Tools | 19

Commit. Develop. Share.

N

https://k9scli.io/
https://k8slens.dev/desktop.html

g

ADOPT

Vector databases zijn gespecialiseerde databases die efficiént hoog-dimensionale vectoren opslaan,
indexeren en ophalen. Deze vectoren worden gebruikt voor semantisch zoeken naar tekst,
afbeeldingen en meer, waardoor toepassingen zoals ChatGPT en GitHub Copilot kunnen
functioneren.

Bij JDriven zijn we van mening dat bedrijven zouden moeten overwegen om vector databases te
gebruiken wanneer ze de mogelijkheden van semantisch zoeken verkennen of zich begeven in het Al-
domein.

Hoewel er talloze leveranciers van vector databases zijn, zijn de meeste, op basis van onze ervaring,
vergelijkbaar, zonder groot onderscheidend kenmerk. Daarom hebben we ervoor gekozen om elk van
deze databases niet afzonderlijk op te nemen in onze Tech Radar. De meest populaire databases zijn
Pinecone, Chroma, pgVector en Weaviate. Bovendien hebben bedrijven zoals Elasticsearch, Redis en
Neoltj vectorfunctionaliteiten geintegreerd in hun gereedschapskist.

TRIAL

[https://www.softwareimprovementgroup.com/solutions/sigrid-software-assurance-platform/] is een code
quality benchmarking tool, gericht op het verbeteren van de kwaliteit van softwarecode door middel
van statische codeanalyse. Het bevat benchmarks op basis van best practices en patterns in code,
opgebouwd vanuit onder andere opensourceprojecten. Het beoordeelt hoe gescande code hiertegen
afsteekt. Sigrid geeft ontwikkelaars en ook management inzicht in de technische kwaliteit van de code.
Het richt zich daarbij wat sterker op het management, maar levert waardevolle inzichten voor zowel de
ontwikkelaars als de stakeholders. Analyse gebeurt na het aanmaken van een pull request in de
repository. Het kent daarbij geen early warning systeem of een plug-in voor een IDE. Volgens Sigrid zal
een plug-in ook niet worden ontwikkeld, er wordt aangeraden om Sigrid naast bijvoorbeeld Sonarlint
en SonarQube te gebruiken. Het wordt bij diverse klanten van JDriven ingezet waarbij we samen met
de klant onderzoeken wat de voor- en nadelen zijn. Om deze reden voegen we Sigrid toe aan het Trial
kwadrant van deze editie van onze Tech Radar.

TRIAL

[https://testkube.io] is een framework om testen uit te voeren en te codrdineren op Kubernetes.
Testkube definieert testen als Kubernetes Custom Resource Definitions (CRD) en biedt ondersteuning
voor tools als Maven en Gradle. Zo is het mogelijk dat integratietesten worden uitgevoerd als er
bijvoorbeeld een nieuwe versie van een microservice wordt gedeployed op Kubernetes. Door middel
van een dashboard, command-line tools en/of configuratiebestanden is het mogelijk om testen te
beheren. Testkube is onderdeel van het Cloud Native Interactive Landscape (CNCF). Het is een
product dat het uitvoeren van testen anders doet dan in de Continuous Integration (Cl) pipeline en we
plaatsen het daarom in Trial zodat ervaring kan worden opgedaan met deze andere manier van testen
uitvoeren.

© 2023 JDriven Tech Radar: Tools | 20

https://www.softwareimprovementgroup.com/solutions/sigrid-software-assurance-platform/
https://testkube.io

ChatGPT

TRIAL

Het bekende taalmodel dat in staat is om complexe gesprekken te voeren met gebruikers, is intussen
meer dan een jaar oud. ChatGPT kan ontwikkelaars helpen bij het oplossen van problemen,
verbeteren van code, detecteren van bugs, uitvoeren van statische codeanalyse en meer.

Echter kunnen we niet blindelings vertrouwen op ChatGPT. Er zijn een aantal redenen om zorgvuldig
om te gaan met de resultaten. Allereerst zal de tool code met vertrouwen presenteren, zelfs als het
fouten bevat, niet geoptimaliseerd is of constructies gebruikt waarvoor betere alternatieven
beschikbaar zijn. De gratis versie heeft gegenereerde code opgeleverd met problemen zoals delen
door nul, n+1 selectieproblemen en refactors die de kwaliteit van de code verminderden. De
gegenereerde code door de betaalde versie is van hogere kwaliteit, maar nog steeds niet vlekkeloos.

Naast functionele problemen kan de tool een beveiligings- of privacyrisico vormen. Chatgeschiedenis
wordt gelogd en aan het model gevoed. Daarom is het belangrijk om alleen code bloot te stellen die
van generieke aard is en geen bedrijfsspecifieke details of gevoelige informatie bevat. Er is geen
garantie dat gegevens veilig zijn.

Al met al is ChatGPT een nuttige en capabele tool, vooral voor het leren van een nieuwe taal, concept
of framework. Gebruik het om aanwijzingen te krijgen voor het oplossen van problemen, maar
vertrouw niet blindelings op de oplossingen zonder precies te weten wat de gegenereerde code doet.
Gebruik het voor refactoring, maar houd er rekening mee dat het mogelijk geen passende patronen of
benaderingen toepast.

Qodana

TRIAL

Qodana is een Static Code Analysis tool van JetBrains. Het wordt meegeleverd met de IntelliJ IDE,
maar moet apart geactiveerd worden. Los van IntelliJ-integratie kent het veel CI/CD- en IDE-
integraties en kan het o.a. Java, Kotlin, JavaScript en TypeScript codebases scannen. Het biedt een
Qodana Cloud dashboard voor het in kaart brengen van de codekwaliteit over meerdere projecten.

Na een paar jaar als preview beschikbaar te zijn geweest, is Qodana officieel uitgekomen in 2023. Het
kent een gratis community-model, maar voor JavaScript/TypeScript- en Spring-ondersteuning ben je
aangewezen op een betaald model. Dat betaalde model is echter ook wat het interessant maakt t.o.v.
SonarQube, want in Qodana betaal je niet voor de hoeveelheid lines of code (LoC), maar voor het
aantal actieve committers. Bovendien zit de CI/CD-integratie bij Qodana in de gratis variant. Dat
betekent dat, afhankelijk van de aard van je project en hoe het onderhouden wordt, Qodana
aanzienlijk goedkoper zou kunnen uitvallen. Het is de moeite waard om die vergelijking te maken en de
tool te proberen.

© 2023 JDriven Tech Radar: Tools | 21

Commit. Develop. Share.

N

g

TRIAL

jlink is een tool om een op maat gemaakte Java Runtime Environment (JRE) te bouwen. Deze tool doet
dit door het strippen van componenten uit de JRE die de doelapplicatie niet nodig heeft. Te denken
valt onder andere aan overbodige modules, documentatie en losse tools voor de Java-omgeving. Een
op maat gemaakte JRE biedt twee voordelen: het leidt tot bruikbare artefacten (zoals Docker images)
van een kleiner formaat, en vermindert de hoeveelheid potentiéle ingangen voor aanvallen. Een kleiner
formaat images leidt tot kortere uitroltijden, met name binnen cloud omgevingen, en mogelijk ook tot
lagere kosten bij het beheren en hosten van images en omgevingen. Door onnodige modules niet toe te
voegen, kunnen kwaadwillende partijen geen gebruik maken van mogelijke veiligheidslekken in deze
modules. Dergelijke lekken kunnen in catastrofale gevallen leiden tot privilege escalation en niet-
geautoriseerde datatoegang.

We hebben jlink onder Trial ingedeeld, omdat wij duidelijke voordelen zien bij het gebruik hiervan.
Zoals met praktisch alle tooling zijn er echter ook een aantal keerzijden. De tool om te bepalen welke
modules nodig zijn voor een gegeven applicatie, jdeps, geeft niet altijd een eenduidige rapportage van
welke modules nodig zijn. Vaak moet met de hand nog een aantal modules aan de lijst worden
toegevoegd. Een serieuzer probleem is dat afwezigheid van benodigde modules kan leiden tot
cryptische foutmeldingen en veranderd gedrag van de applicatie. Dit zorgt ervoor, dat een op maat
gemaakte JRE een klein risico kan vormen, wat het voor sommige toepassingen ongeschikt maakt.

TRIAL

[https://maven.apache.org/extensions/maven-build-cache-extension/] is een extensie voor
Maven (beschikbaar vanaf versie 39) waarmee je je Maven builds efficiénter kunt maken door slim
gebruik te maken van caching (vergelijkbaar met de Gradle Build Cache).

De build cache kan op verschillende momenten in het build-proces de outputs, zoals gegenereerde
code of gecompileerde classes, in een cache plaatsen. Als op een later moment de build nogmaals
wordt uitgevoerd met (deels) ongewijzigde inputs, kunnen de eerder gecachete outputs worden
hergebruikt. Hierdoor kunnen delen van de build, zoals het compileren van code en het uitvoeren van
tests, worden overgeslagen, waardoor de totale buildtijd afneemt. Bijkomend voordeel is dat build
caches ook gedeeld kunnen worden door gebruik te maken van een remote cache.

Door de Maven Build Cache extension te introduceren is het in veel gevallen mogelijk om de buildtijd
van je Maven-projecten significant te verminderen. Doordat dit een vrij nieuwe feature van Maven is,
bestaat de mogelijkheid dat nog niet elke third-party Maven-plugin hier goed mee samenwerkt.
Daarnaast is elk Maven-project anders, dus zal het enig uitzoekwerk kosten om de build cache op de
juiste manier te laten werken. Een verkeerd geconfigureerde build cache kan leiden tot instabiele, niet-
reproduceerbare builds. Om deze redenen plaatsen wij het in Trial.

© 2023 JDriven Tech Radar: Tools | 22

https://maven.apache.org/extensions/maven-build-cache-extension/

Error Prone

ASSESS

Error Prone [https://errorprone.info/index] is een Java-library die een reeks checks en statische
analysemogelijkheden biedt tijdens de build-fase.

Door OutOfRange en NullPointerExceptions te identificeren, evenals ineffectieve tests, maakt Error
Prone directe feedback op diverse problemen mogelijk. Error Prone biedt ontwikkelaars ook de
mogelijkheid om de checks aan te passen aan specifieke codingstijlen, projectvereisten en best
practices uit het vakgebied.

Door Error Prone te integreren in de ontwikkelworkflow hopen we de codekwaliteit te verbeteren, het
risico op defecten te verminderen en de productiviteit van ontwikkelaars te verhogen. De proactieve
aanpak van Error Prone bij het identificeren van potenti€le problemen is de reden waarom we het
hebben geplaatst in het Assess gedeelte van deze editie van onze Tech Radar.

Thunderdome Dev

ASSESS

Thunderdome.dev [https://thunderdome.dev/] is een opensource-samenwerkingstool. ~ Een
onderscheidende feature is als planning poker-tool. Het kan ook worden gebruikt bij andere
processen, zoals retrospectives, team checkins, en feature/story mapping. Het proces van planning
poker werkt goed in de context van persoonlijke aanwezigheid van teamleden. In een hybride
werkomgeving mist die context, waardoor het ontwikkelteam het proces op een andere manier moet
vormgeven. Thunderdome.dev zorgt bij planning poker voor een basisstructuur waarmee dit
makkelijker wordt.

Aan de ene kant is het een erg toegankelijke tool, aan de andere kant is de toepassing sterk afhankelijk
van de werkwijze en behoeftes van het ontwikkelteam. We plaatsen Thunderdome.dev daarom in
Assess. Houd bij een assessment rekening met alle features van deze tool. Met name voor de
mogelijkheid als aanvulling op, of vervanging van een gevestigde tool als Jira.

Konsist

ASSESS

Konsist [https://docs.konsist.lemonappdev.com/getting-started/readme] is een static code-analyzer library voor
Kotlin die helpt codeconventies te garanderen en gedefinieerde architecturele grenzen kan
controleren. Controles worden uitgevoerd in unittests en kunnen als zodanig worden uitgevoerd tijdens
pull requests om de architectuur van een project te beschermen. Konsist ondersteunt Kotlin-projecten,
waaronder Android, Spring en Kotlin Multiplatform, terwijl ArchUnit, een vergelijkbare tool, alleen
(JVM) bytecode-analyse ondersteunt.

Wij bij JDriven geloven in codekwaliteit en een helder gedefinieerde software-architectuur. Konsist is
een zeer nuttig hulpmiddel in onze gereedschapskist om codeconventies en architecturale grenzen te
formaliseren en te verifieren. Omdat Konsist nog in de kinderschoenen staat, houden we de
ontwikkeling ervan in de gaten voordat we de adoptie ervan volledig aanraden.

© 2023 JDriven Tech Radar: Tools | 23

Commit. Develop. Share.

N

https://errorprone.info/index
https://thunderdome.dev/
https://docs.konsist.lemonappdev.com/getting-started/readme

g

HOLD

[https://www.docker.com/products/docker-desktop/] is een product om makkelijk met
containers te werken op desktop computers of laptops en wordt vooral gebruikt op Microsoft
Windows- en macOS-systemen. De licentievoorwaarden voor Docker for desktop zijn in 2022 gewijzigd,
waardoor bedrijven mogelijk geld moeten betalen om Docker for desktop te gebruiken. In 2023 is de
overgangsperiode van één jaar verstreken en gaan de licentievoorwaarden nu echt gelden. Daarom
plaatsen we Docker for desktop nu op Hold. Dit betekent dat voor de inzet van Docker for desktop
eerst goed moet worden nagedacht of andere tools misschien een beter alternatief zijn.

HOLD

[https://projectlombok.org/] is een codegenerator om boilerplate-code zoals getters, setters en
constructors in Java code te laten genereren. De code wordt hoofdzakelijk vanuit annotaties
gegenereerd. De wildgroei aan annotaties, de benodigde kennis van de Lombok-implementatie en de
opkomst van nieuwere Java language features, zoals records, maakt dat JDriven terughoudend is bij
het inzetten van Lombok voor nieuwe projecten.

Er zijn veel Lombok-annotaties, waarvan niet elke developer zich bewust is van de consequenties.
Lombok genereert code waarvan een developer moet weten dat deze er is, maar het feitelijk niet kan
zien omdat het in de codegeneratie-stap onzichtbaar aan de bytecode wordt toegevoegd. Als
developer zijn we tien keer zo vaak code aan het lezen als aan het schrijven. Dat maakt juist dat we het
lezen moeten vergemakkelijken om het zo makkelijker schrijfbaar te maken.

Bedenk bij het gebruik van bijvoorbeeld @Getter, @Setter, @NoArgsConstructor en @Builder of het
daadwerkelijk bijdraagt aan beter leesbare code, of dat het juist belemmerend is bij het lezen van de
code. Het gebruik van meerdere Lombok-annotaties kan overlappende functionaliteit hebben,
waardoor de code overbodige annotaties bevat die de leesbaarheid niet verhogen. Soms is het
volledig uitschrijven van de Java-code in een POJO (Plain Old Java Obiject) zonder deze Lombok-
annotaties beter om de leesbaarheid te verhogen.

Wij als JDriven adviseren om simpele voorbeelden die vaak met Lombok zijn uitgeschreven niet
klakkeloos in projecten als voorbeeld te gebruiken, maar goed na te denken over de toepassing van
Lombok-annotaties. Om deze reden plaatsten wij Lombok in het Hold kwadrant van deze editie van
onze Tech Radar.

© 2023 JDriven Tech Radar: Tools | 24

https://www.docker.com/products/docker-desktop/
https://projectlombok.org/

JobRunr

HOLD

JobRunr [https://www.jobrunrio/] is een Java-library voor het dracien en aansturen van
achtergrondprocessen. Met JobRunr kun je jobs plannen, batches uitvoeren, of workflows maken met
behulp van Java Lambda-functies, met ingebouwde functies voor het opnieuw proberen van jobs die
gefaald zijn. JobRunr komt met een webinterface waarmee je de jobs in de gaten kunt houden, jobs
kunt aansturen, en het kan je inzicht geven wanneer er fouten zijn opgetreden. Alhoewel de gratis
versie erg interessant is en het overwegen waard om te gebruiken, hebben we JobRunr op Hold
geplaatst vanwege de pro versie. JobRunr Pro is namelijk niet opensource en er zijn maar een aantal
mensen die eraan werken, wat voor wat risico zorgt dat sommige bedrijven liever vermijden. Dus ons
advies is om hier zorgvuldig een keuze te maken.

Diffblue Cover

HOLD

Diffblue Cover [https://www.diffblue.com/products/], een geautomatiseerde tool voor het genereren van
unittesten voor Java code, toont sterke punten in het begrijpen van de te testen code en het creéren
van geschikte mocks. Echter, het vermogen om complexe mockdata te genereren is beperkt, en de
benadering van het genereren van testen komt mogelijk niet overeen met bestaande projectstijlen.

Hoewel Diffblue Cover nuttig kan zijn voor het genereren van boilerplatecode en het opzetten van
eerste testen, zal het handmatige testen niet volledig vervangen. Tevens is de compatibiliteit beperkt
tot specifieke versies van Spring, Java en JUnit, en het heeft moeite met methoden zonder parameters
of klassen zonder constructors. Verder kan Diffblue Cover niet worden uitgevoerd op een heel project
of zelfs op pakketten, wat de toepasbaarheid ervan beperkt.

Daarom wordt Diffblue Cover in het kwadrant Hold geplaatst van deze editie van onze Tech Radar.

© 2023 JDriven Tech Radar: Tools | 25

Commit. Develop. Share.

N

https://www.jobrunr.io/
https://www.diffblue.com/products/

Commit.
Develop.
Share.

	JDriven Tech Radar Najaar 2023: Onze kijk op recente ontwikkelingen in het veld
	Introductie
	Tech Radar
	Indeling

	Talen & frameworks
	Azure Bicep
	Structured concurrency
	Quarkus
	Langchain4j
	Backstage
	Service Weaver
	Jakarta 11
	Terraform CDK
	HTMX
	JetBrains Compose
	OpenTofu

	Techniques
	DDD
	Team Topologies
	Dev Ex
	Automatisch mergen van dependency updates
	Prompt Engineering
	AI code assist
	Developer Productivity Engineering
	Inner Source
	Unit testing voor alerting
	GPU Programming
	Sustainable software engineering

	Platforms
	Edge Computing
	Apache Pulsar
	Cloud events
	Dapr
	Moderne platform
	eBPF
	Azure Container Apps

	Tools
	k9s
	Vector Databases
	Sigrid
	Testkube
	ChatGPT
	Qodana
	jlink
	Maven Build Cache Extension
	Error Prone
	Thunderdome Dev
	Konsist
	Docker 4 Desktop
	Lombok
	JobRunr
	Diffblue Cover

