Onze kijk op recente ontwikkelingen in het veld

Qe editie

Commit to know.

Develop to grow.

Share to show.

Introductie

Onze ervaren specialisten werken dagelijks mee aan tal van softwareprojecten in Nederland en zijn
betrokken in wereldwijde community’s. Halfjaarlijks komen wij vanuit JDriven bij elkaar om te
bespreken wat wij aan nieuwe trends en ontwikkelingen zien. Deze trends proberen wij te vangen in
een technologieradar. Elke editie van de radar laat verschuivingen zien t.o.v. een vorige editie. Een
verschuiving kan betekenen dat wij een technologie interessanter zien worden waar van toepassing, of
juist minder geschikt ongeacht de toepassing. Indien een trend niet meer voorkomt in een latere editie,
dan zijn er geen nieuwe ontwikkelingen en/of ervaringen die ons eerdere beeld zouden hebben
bijgesteld. In dit document willen we toelichten welke verschuivingen we de afgelopen periode hebben
waargenomen, om op basis daarvan weer richting te geven aan wat wij inzetten en aanraden.

Tech Radar

Het idee voor het opstellen van een Tech Radar komt voort vanuit Thoughtworks. Zij dragen al langer
periodiek met een radar hun visie uit op nieuwe trends en ontwikkelingen. Bovendien raden zij iedereen
aan een eigen radar op te stellen [https://www.thoughtworks.com/radar/byor].

Bij JDriven onderschrijven we dat. Het opstellen van een Radar is een leerzame en waardevolle
ervaring waarin onderling kennis wordt gedeeld en een technisch bewustzijn wordt gecreéerd. Wij
geloven erin dat specialisten zelf in staat moeten zijn om het gereedschap voor hun werkzaamheden
samen te stellen. Met het opstellen van een radar faciliteer je discussies over technologie, om als
organisatie de juiste balans te vinden in wat voor risico’s en voordelen innovatie kan opleveren. Wij
kunnen je helpen dit op te starten binnen je organisatie. Laat je teams elkaar inspireren tot innovatie
en gezamenlijk komen tot een set aan technologie€n en technieken die de ontwikkeling in je bedrijf
versnellen.

Indeling

Een radar bestaat uit kwadranten en ringen, met daarbinnen blips om interessante technologieén en
technieken aan te duiden.

De kwadranten verdelen de verschillende onderwerpen in categorieén.

+ Talen & frameworks die je ondersteunen bij de ontwikkeling van software

+ Platformen waarop je software kunt uitvoeren

« Technieken die je helpen betere software te maken

+ Tools ter ondersteuning van je ontwikkel- en delivery-proces
De ringen in elk kwadrant geven aan in welk stadium van adoptie wij denken dat die technologie zich
bevindt.

+ Adopt - Wij raden sterk aan deze technologie te gebruiken, waar van toepassing.

« Trial - Interessant om alvast ervaring mee op te doen (in een project dat het risico kan dragen).

 Assess - Goed om beter te begrijpen en toekomstige impact in te schatten, maar nog niet om
toe te passen.

+ Hold - Niet (meer) gebruiken.

In de volgende secties zullen we onze kijk op de recente ontwikkelingen per kwadrant toelichten.

© 2024 JDriven Tech Radar: Introductie | 1

Commit. Develop. Share.

N

https://www.thoughtworks.com/radar/byor

Technigues Tools

Hold Assess Trial Adopt Adopt Trial Assess Hold
Languages &
Platforms Frameworks
@ New ® Existing

} © 2024 JDriven Tech Radar: Introductie | 2

Tools

Talen & frameworks

ADOPT
Vector Databases

ADOPT
Quarkus
Structured concurrency

TRIAL

ChatGPT TRIAL

jlink Backstage

Maven Build Cache Extension HTMX

Qodana ktor
Langchainkj

ASSESS No frameworks

Claude 3

GitHub Codespaces ASSESS

Konsist Jakarta 11

Thunderdome Dev Jetbrains compose
Terraform CDK

HOLD Vector API

Diffblue Cover

JobRunr HOLD
OpenTofu

Platforms Technieken

ADOPT ADOPT

- Automatic merging of dependency updates
CVE awareness

TRIAL Dev Ex

Cloud events Prompt Engineering

ASSESS TRIAL

Azure container apps 1TFB NFC

eBPF Inner Source

Moderne platform Unit testing voor alerting

OpenFGA
ASSESS

HOLD Sustainable software engineering

HOLD
Distributed Monolith

© 2024 JDriven

Tech Radar: Introductie | 3

Commit. Develop. Share.

N

Adopt Trial Assess Hold Assess

26. Vector API
32. Jakarta 1
34, Terraform CDK

37. Jetbrains compose

/ .) Trial

. . 27. No frameworks
28. ktor

30. Langchaindj
35. HTMX

36. Backstage

— Adopt

@ New ® Existing
29. Structured concurrency

31. Quarkus

Hold

33. OpenTofu

ADOPT

[https://quarkus.io/] is een fijnwerkend framework voor developers die Context en Dependency
Injection (CDI) en MicroProfile gewend zijn. Volgens hun eigen site is het: "A Kubernetes Native Java
stack tailored for OpendDK HotSpot and GraalVM, crafted from the best of breed Java libraries and
standards." Het is vergelijkbaar met andere frameworks zoals Spring Boot, en is met name geschikt om
serverapplicaties te bouwen.

Quarkus is ontwikkeld om het leven van developers gemakkelijk te maken. Er is weinig configuratie
nodig om ermee te kunnen werken. Het framework biedt ondersteuning om eenvoudig in development-,
test- of productiemodus te draaien. Quarkus gaat efficiént om met geheugen. Met behulp van
extensies is de functionaliteit eenvoudig uit te breiden. Het is een volwassen product geworden
(inmiddels is versie 3 al uit). Quarkus biedt standaard ondersteuning voor het bouwen van Docker
containers, zodat je die in Kubernetes of OpenShift kunt draaien.

Het gebruik van Smallrye Mutiny als Reactive Streams library maakt het mogelijk om imperatieve stijl
naast reactive stijl te laten bestaan. Dit stelt developers in staat om laagdrempelig en stapsgewijs een
applicatie volledig non-blocking te maken.

Testen wordt ook uitgebreid ondersteund. Met de @uar kusTest annotatie kun je gemakkelijk
integratietests opnemen in de build pipeline, waarbij ook test containers worden ondersteund. Het is
ook mogelijk om jouw applicatie lokaal in developer mode te starten. Met de tool
[https://skaffold.dev/] (geen standaard onderdeel van Quarkus) kun je daarnaast snel een nieuwe
deployment testen in een lokaal draaiend Kubernetes-cluster (bv. minikube of Rancher Desktop).

Het is zeer geschikt voor HTTP RESTful web development en integreert goed met gangbare message

© 2024 JDriven Tech Radar: Talen & frameworks | 4

https://quarkus.io/
https://skaffold.dev/

protocols, authentication protocols, datastores en platforms. Dankzij de rijkelijk aangeklede
handleidingen is het bovendien relatief eenvoudig om Quarkus naar behoefte uit te breiden.

Het maken van native executables is al lang niet meer een onderscheidende factor voor Quarkus,
maar door de brede ondersteuning en uitgebreide documentatie heeft Quarkus ons bewezen een
serieuze speler te zijn in het aanbod van JVM CDI Frameworks. In het afgelopen jaar werd Quarkus bij
diverse klanten succesvol ingezet (0.a. financiéle sector). Hiermee heeft het zich als stabiel framework
bewezen, waarmee Quarkus in deze editie de Adopt status heeft verkregen.

Structured concurrency

ADOPT

Structured concurrency is een programmeerparadigma dat een gestructureerde aanpak biedt voor
het parallel uitvoeren van taken. Het introduceert een aantal tools en abstracties om parallel
uitgevoerde code te vereenvoudigen, met als doel de leesbaarheid, onderhoudbaarheid en het
debuggen van code te verbeteren. In tegenstelling tot traditioneel thread management, zorgt
structured concurrency ervoor dat alle gelijktijdige taken expliciet worden gescopet en beheerd,
waardoor het eenvoudiger wordt om te redeneren over hun levenscyclus. Dit paradigma helpt
ontwikkelaars om veelvoorkomende valkuilen van verkeerd thread management zoals resourcelekken
en onvoorspelbaar gedrag te voorkomen, door een meer georganiseerde en deterministische manier te
bieden om met concurrency om te gaan.

Wij raden aan om, waar mogelijk, gebruik te maken van structured concurrency bij het ontwikkelen
van applicaties. In bijvoorbeeld Kotlin raden wij aan om gebruik te maken van Kotlin Coroutines bij
code die baat heeft bij parallele uitvoering. In Java 21 is structured concurrency nog in preview. Toch
raden we aan om deze nieuwe functie alvast uit te proberen en er vertrouwd mee te raken, zodat het
kan worden gebruikt zodra het gereleaset wordt.

Backstage

TRIAL

Backstage [https://backstage.io/] is een open source developer portal. Het is door Spotify gemaakt en
gedoneerd aan de Cloud Native Computing Foundation (CNCF). Het is in 2020 gepubliceerd en is dus
een relatief nieuw platform.

Het doel van Backstage is het bieden van een centrale plek voor software, tooling en documentatie.
Het biedt daarbij de mogelijkheid om templates te schrijven, waarmee snel een nieuw project is op te
starten.

Backstage heeft veel integraties en plugins voor verschillende tools om dit doel te realiseren. De sterke
punten van Backstage komen het beste naar voren als het bij grote projecten wordt gebruikt.

Voorbeelden van grote bedrijven die Backstage gebruiken:

* LinkedIn
« Vodafone
* Lego

« Siemens

Backstage staat in Trial, want het nut van een developer portal is niet altijd duidelijk en kan verschillen
per project. De cultuur en omvang van een bedrijf zijn belangrijke factoren.

© 2024 JDriven Tech Radar: Talen & frameworks | 5

Commit. Develop. Share.

N

https://backstage.io/

TRIAL

[https://htmx.org/] is een JavaScript-library gericht op het bouwen van een

[https://hypermedia.systems/hypermedia-systems/] (HDA). HDA en htmx zijn een reactie op de
zware Single Page Application JavaScript-frameworks als React en Angular, en leggen de aandacht
terug op de kracht van HTTP, HTML, hyperlinks en REST, samengevat als hypermedia architecture. De
opkomst van SPA’s kan verklaard worden door het feit dat het moeilijk was om in web 1.0 viotte UI-
overgangen en interactiviteit te bouwen zonder trage en merkbare page reloads. HTML biedt nog altijd
slechts 2 HTTP methods (GET en POST) en 2 HTML-elementen (anchor en form) voor interactiviteit met
server content.

De oplossing, die SPA-frameworks voor dit gebrek aan HTML-interactiviteit hebben geintroduceerd,
heeft echter wat nadelen: ze verandert RESTful backend-API’s in data-API’s die JSON serveren, maakt
JavaScript leidend om HTML te tonen, en introduceert een complexe frontend-architectuur leunend op
vele JavaScript-libraries voor schijnbaar eenvoudige zaken zoals URLs, web content indexering (SEO),
de back button, caching, progressive enhancement en loose coupling. htmx gebruikt JavaScript om de
bovengenoemde tekortkomingen van HTML te adresseren, om daarna uit de weg te gaan en websites
weer hypermedia-gedreven te kunnen maken, en daarmee de tekortkomingen van SPA’s te vermijden.

We zien een toename van interesse in htmx en HDA onder full-stack developers, en zelfs onder frontend
developers die hun carriére begonnen zijn met het toepassen van SPA-frameworks en de genoemde
problemen herkennen. JDriven adviseert om bij het opzetten van een frontend-architectuur te kijken of
een SPA-architectuur wel de beste oplossing is, of dat HDA en htmx een goede fit zouden kunnen zijn.
Let daarbij op de toepasbaarheid van tools in het frontend-ecosysteem zoals design systems, Tailwind
CSS en Playwright. Omdat htmx in feite een terugkeer naar serverside rendering is, is het ook
belangrijk om de ontwikkelingen op het gebied van Edge Computing, die ook spelen op het gebied van
SPA’s, mee te nemen in de overweging.

TRIAL

[https://ktorio/] is een framework voor Kotlin om snel webapplicaties mee te bouwen. Het is een
relatief lichtgewicht framework. Ktor ondersteunt standaard alleen de meer moderne en veelgebruikte
functionaliteiten voor webservices, zoals routing, templating en serialisatie. Door het gebruik van de
Coroutines bibliotheek van Kotlin is het gemakkelijk om services te maken die onder belasting goed
blijven functioneren. Ook is er standaard ondersteuning voor meerdere HTTP-servers.

We hebben er voor gekozen Ktor in de trial ring te plaatsen. Het framework bestaat al een geruime tijd
(negen jaar), en heeft inmiddels aardig wat tractie binnen de gemeenschap opgebouwd. De
ondersteuning voor externe afhankelijkheden en opties is echter beperkt in vergelijking met meer
gevestigde frameworks als Spring. Ontwikkelaars moeten daarom meer code schrijven om deze
afhankelijkheden binnen hun project te gebruiken.

Als de benodigdheden voor een service grotendeels door Ktor vervuld kunnen worden, is het een
interessante optie om in korte tijd een webservice op te zetten.

© 2024 JDriven Tech Radar: Talen & frameworks | 6

https://htmx.org/
https://hypermedia.systems/hypermedia-systems/
https://hypermedia.systems/hypermedia-systems/
https://ktor.io/

Langchainlj
TRIAL

Langchaink] [https://github.com/langchainkj/langchaintj] is een framework om eenvoudig applicaties te
ontwikkelen met Al large language models (LLM).

Deze LLM’s kunnen verscheidene taken met betrekking tot natuurlijke taalverwerking uitvoeren, zoals
vertalingen maken en content samenvatten. Ze kunnen ook generatieve taken als contentcreatie
uitvoeren en zijn ook extreem nuttig om vragen te beantwoorden.

Met dit framework kunnen LLM-providers eenvoudig worden uitgewisseld omdat er een abstractielaag
tussen zit. Implementaties voor OpenAl GPT-4, Azure OpenAl en Google Vertex Al zijn beschikbaar, en
ook lokale modellen kunnen gebruikt worden met Ollama [https://ollama.ai/]. Het is een tegenhanger
van de Llangchain [https://www.langchain.com/] library voor Python en Javascript. De Java-
implementatie is volop in ontwikkeling en er komen steeds nieuwe functies bij.

Indien je een Java-applicatie wilt uitbreiden met Al-functies, dan is het bekijken van dit framework de
moeite waard. Er kan dan ook eenvoudig gewisseld worden tussen en getest worden met verschillende
modellen.

Wij bij JDriven geloven dat de abstractielaag van dit framework leidt tot flexibelere software zonder
"vendor lock-in", wat een voordeel is, gezien het feit dat alle features en modellen nog volop in
beweging zijn. Als er bijvoorbeeld wegens privacy of betere resultaten van model gewisseld moet
worden, is dit eenvoudig te realiseren.

No frameworks

TRIAL

Vrijwel iedereen gebruikt frameworks voor het bouwen van applicaties. Je kan er vaak snel en relatief
eenvoudig een applicatie mee bouwen, omdat een framework typisch de volgende zaken eenvoudig
maakt (vaak mbv. annotaties en conventies):

+ configuratie via properties laden

» Dependency Injection

+ ingebouwde REST server

+ ingeboude JSON marshalling/unmarshalling

« ingebouwde REST client

« ingebouwde ORM

+ ingebouwd transactiemanagement

* ingebouwde log library
Maar frameworks hebben, veelal door hun omvang, ook nadelen. Dat merk je vaak pas na enige tijd,
als je bijvoorbeeld een extra library (dependency) wilt gebruiken, en deze conflicteert met een van de
(transitieve) libraries van het framework, of wanneer je het framework of zo’n library upgradet naar
een nieuwere versie. Plotseling kunnen er onbegrijpelijke fouten optreden zoals ingewikkelde
versieconflicten van transitieve dependencies, niet meer werkende annotaties, vage runtime errors
waardoor bijvoorbeeld de tests of de applicatie zelf niet meer opstarten, etc. Het kost vaak veel moeite
om de oorzaak te achterhalen en op te lossen, omdat het framework zo groot en complex is en veel

'automagisch' via annotaties en/of conventies (die je niet allemaal weet) doet. Niet zelden lijkt alle
tijdwinst door het gebruik van een framework daardoor in één klap verloren.

Waarom bouwen we een applicatie niet gewoon zonder frameworks, en met alleen de lichtgewicht
libraries die we nodig hebben (cherry-picking)? Dat is heel goed mogelijk met bijvoorbeeld de

© 2024 JDriven Tech Radar: Talen & frameworks | 7

Commit. Develop. Share.

N

https://github.com/langchain4j/langchain4j
https://ollama.ai/
https://www.langchain.com/

volgende aanpak:

- Configuratie laden via properties files kan gewoon met de standaard Java Properti es class.
Daar heb je geen library voor nodig.

» Dependecy Injection kun je ook heel goed zelf doen middels constructor injection. Daar heb je
geen loC (Inversion of Control) en dus ook geen framework voor nodig.

« Een lichtgewicht HTTP-server zoals [https://eclipse.dev/jetty/] of [https://undertow.io/]
is voldoende om tekst strings te kunnen uitwisselen over HTTP. En met een library als
[https://github.com/FasterXML/jackson] kun je zelf JSON strings marshallen/unmarshallen.

+ Een eenvoudige HTTP-client zoals [https://square.github.io/okhttp/] kan gebruikt worden om
op soortgelijke manier een REST client te bouwen.

. [https://hibernate.org/] is ook prima als losse library te importeren als je een ORM nodig
hebt.

* En Hibernate biedt ook transactiemanagement via
Enti t yManager. get Transaction(). begi n() en
Enti t yManager. get Transaction().comit ().

* Er zijn meerdere log libraries beschikbaar om los te gebruiken, bijvoorbeeld
[https://www.slfl4.org/].

Deze aanpak vergt iets meer code dan bij een framework waar je het één en ander cadeau krijgt. Een
groot voordeel is echter dat je veel minder transitieve dependencies en daarmee complexiteit
binnenhaalt. Tevens is de code meer expliciet, met minder 'automagische' annotaties en conventies.
Dat maakt het debuggen een stuk eenvoudiger. Uiteindelijk is deze opzet daarmee eigenlijk veel
eenvoudiger dan met een groot log framework waar van alles in zit en waarvan je lang niet alles
gebruikt (YAGNI - You Arent Gonna Need It). Ofwel een goed voorbeeld van KISS (Keep It Simple
Stupid). Als een framework niet vereist is, kan het dus de moeite waard zijn om te kiezen voor een no-
framework opzet.

ASSESS

[https://jakarta.ee/specifications/platform/11/] is de nieuwste (aankomende) versie van Jakarta
EE. Deze nieuwste versie heeft een aantal interessante features zoals Virtual Threads en Jakarta Data
(vergelijkbaar met Spring Data). Het ondersteunt alleen Java 21 en het verwijdert een aantal oude
specificaties. Dit alles zorgt ervoor dat dit een interessante versie van Jakarta EE wordt wat het
volgens ons de moeite waard maakt om te beoordelen.

ASSESS

JetBrains zet met Compose Multiplatform in op het ontwikkelen van businessfunctionaliteit in één
codebase, met een op diverse platforms toegespitste Ul. Het combineert de krachten van Jetpack
Compose en Kotlin Multiplatform om ontwikkeling voor servers, Android, iOS, web (via Kotlin/Wasm),
en desktop (Linux, macOS, Windows) vanuit een enkele codebase mogelijk te maken.

Voor developers die reeds bekend zijn met de wereld van Kotlin en/of Android development, is
Compose Multiplatform veelbelovend. Het biedt de mogelijkheid om business logic en Ul-code
bruikbaar te maken voor alle genoemde platforms. De vraag blijft altijd, of de effectiviteit van het
werken met één codebase opweegt tegen de extra lagen van abstractie, die nodig zijn om te komen tot
een grote gemene deler in de code. Ook is het zo, dat de iOS-functionaliteit nog in alpha-fase is, en
Kotlin/Wasm voor web nog experimenteel. Maar het biedt een interessante optie voor organisaties die
willen investeren in business logic, een homogene developer skillset en een uniforme Ul over meerdere
platforms.

© 2024 JDriven Tech Radar: Talen & frameworks | 8

https://eclipse.dev/jetty/
https://undertow.io/
https://github.com/FasterXML/jackson
https://square.github.io/okhttp/
https://hibernate.org/
https://www.slf4j.org/
https://jakarta.ee/specifications/platform/11/

Terraform CDK

ASSESS

Terraform maakt gebruik van HashiCorp Configuration Language (HCL) om op een cloudagnostische
wijze de infrastructuur van een applicatie te beheren. HCL is een declaratieve taal om cloudresources
te beschrijven. Echter betekent het gebruik hiervan dat developers een nieuwe taal moeten leren om
met deze tooling overweg te kunnen. Door gebruik te maken van CDK for Terraform (CDKTF) kan men
nu ook aan de slag met Java, C#, Python, TypeScript of Go voor het beheren van infrastructuur.

CDKTF verdient een plekje op de Tech Radar omdat Terraform onderhand een bewezen technologie is,
waar deze toevoeging een aantal voordelen biedt ten opzichte van de conventionele aanpak. Zo krijgt
men code completion en IDE-support cadeau, integreert de infrastructuurdefinitie beter met
bestaande tooling zoals codeformatters en linters, en wordt het laagdrempeliger voor developers om
Terraform te gaan gebruiken in hun projecten.

Op 21 augustus 2022 heeft HashiCorp de tooling als 'production ready' aangemerkt, met de
kanttekening dat de tooling nieuw is en daarom nog niet volledig volwassen. Daarnaast is de
documentatie omtrent bepaalde onderwerpen benedenmaats, en introduceert de CDK een aantal
nieuwe concepten en dus wat extra complexiteit. Al met al een interessante ontwikkeling om in de
gaten te houden, zeker als Terraform al gebruikt of overwogen wordt.

Vector API

ASSESS

De Vector API is een incubator APl om voorspelbaar gebruik te maken van SIMD (single instruction,
multiple data) instructies binnen het Java platform. Deze instructies opereren op meerdere data-
primitieven tegelijk, tot wel 16 elementen op moderne processoren. Hierdoor kan een aanzienlijke
snelheidswinst worden behaald, wanneer dezelfde mathematische operatie moet worden uitgevoerd
op een groot aantal data-elementen. De Vector APl is onder Java 16 als incubator vrijgegeven.
Wanneer project Valhalla gereed is, zal de Vector APl in de Java mainline geintegreerd worden.

Onder bepaalde omstandigheden kan de HotSpot VM in OpendDK zelfstandig SIMD instructies
gebruiken voor bepaalde operaties. Dit gedrag kan echter onvoorspelbaar zijn, waardoor hier niet
goed op te vertrouwen is. Alleen als aan alle (impliciete) randvoorwaarden voldaan is, zal de JIT
compiler de auto-vectorisatie uitvoeren. Een ander voordeel van de Vector API is, dat deze gebruikt
maakt van Intel’s SVML bibliotheek, die SIMD implementaties van veelgebruikte wiskundige functies
bevat.

Wij hebben ervoor gekozen om de Vector APl in assess te zetten. Hoewel dit de achtste incubator zal
worden voor de Java 23 release deze herfst, is de APl nog steeds niet stabiel verklaard. Het hoofddoel
van de APl is het oplossen van problemen met performance voor gedeeltes van de code die een sterk
numerieke focus hebben. Omdat het gebruik van de Vector API de leesbaarheid van de code niet ten
goede komt, is het belangrijk dat deze alleen gebruikt wordt om specifieke performance problemen
mee aan te pakken. Tot slot kunnen toekomstige verbeteringen in de JIT ertoe leiden dat de compiler
beter in staat zal zijn om auto-vectorisatie toe te passen, waardoor het nut van het gebruik van de
Vector APl afneemt.

© 2024 JDriven Tech Radar: Talen & frameworks | 9

Commit. Develop. Share.

v

g

HOLD

HashiCorp heeft de sourcecode-licentie van zijn producten, zoals Terraform, aangepast naar een

[https://www.hashicorp.com/bsl]. Dat heeft onder gebruikers van Terraform geleid
tot zorgen, dat het omringende ecosysteem van tools daaronder gaat lijden. Op 23 augustus 2023 is
er een fork gemaakt van Terraform, genaamd OpenTofu. Het doel is om dit als opensourceproject te
laten voortbestaan onder beheer van de Linux Foundation.

Nadere inspectie van de [https://www.hashicorp.com/license-faq] van HashiCorp over deze
licentievoorwaarden wijst echter uit, dat de wijziging naar een BSL alleen bedrijven treft, die
commerciéle producten maken die concurreren met HashiCorp’s producten, door gebruik te maken
van HashiCorp’s eigen producten. Dat is voor de grootste groep gebruikers van Terraform niet van
toepassing. Daarom zien wij voor hen geen reden om uit te wijken naar een alternatief voor Terraform
zoals OpenTofu, wat we daarom op Hold plaatsen.

Eind april 2024 [https://www.prnewswire.com/news-releases/ibm-to-acquire-hashicorp-inc-
creating-a-comprehensive-end-to-end-hybrid-cloud-platform-302126646.html] dat HashiCorp tegen het eind van
2024 als onderdeel van IBM verder zal gaan. Alhoewel dit tot hernieuwde belangstelling voor OpenTofu
zal kunnen leiden, zien we geen reden om aan te nemen dat deze overname bestaande gebruikers van
Terraform in de weg zal zitten.

© 2024 JDriven Tech Radar: Talen & frameworks | 10

https://www.hashicorp.com/bsl
https://www.hashicorp.com/license-faq
https://www.prnewswire.com/news-releases/ibm-to-acquire-hashicorp-inc-creating-a-comprehensive-end-to-end-hybrid-cloud-platform-302126646.html

Technieken

Hold

1. Distributed Monolith ~
Trial

2.1TFB NFC -

4. Inner Source ~

8. Unit testing voor alerting “
Adopt

3. CVE awareness v

5. Dev Ex ~

7. Automatic merging of dependency updates “

9. Prompt Engineering ~

Hold Assess Trial Adopt

Assess @ New @ Existing

6. Sustainable software engineering v

Automatic merging of dependency updates

ADOPT

Het automatisch mergen van dependency updates is vandaag de dag steeds belangrijker aan het
worden. Tegenwoordig komt het steeds vaker voor dat kwetsbaarheden ontdekt worden die meekomen
met dependencies in projecten. Wij vinden dat het automatisch updaten en mergen van de
desbetreffende dependencies de juiste manier is, zodat code zo up-to-date mogelijk blijft.

Enkele tools die het automatisch mergen van de dependency updates mogelijk maken zijn onder
andere Renovate [https://github.com/renovatebot/renovate] en Dependabot [https://github.com/dependabot/
dependabot-core]. Wat deze in essentie doen is het continu scannen van de dependencies in het project
en hier merge requests voor aanmaken indien er updates beschikbaar zijn. Ontwikkelaars kunnen deze
merge requests handmatig of automatisch mergen.

JDriven kiest ervoor om deze techniek op te nemen in de Tech Radar en in Adopt te plaatsen, omdat
het teams efficiént laat werken door het bijhouden van dependency versies (deels) te automatiseren,
wat leidt tot kwalitatieve en veilige software.

© 2024 JDriven Tech Radar: Technieken | 11

Commit. Develop. Share.

N

https://github.com/renovatebot/renovate
https://github.com/dependabot/dependabot-core

ADOPT

Binnen de wereld van software engineering is [https://www.mitre.org/focus-areas/cybersecurity]
vooral bekend van de database met [https://www.cve.org/]
die het bijhoudt en gratis openbaar maakt. De organisatie MITRE heeft in diverse hoedanigheden een
rol gespeeld bij het Amerikaanse ministerie van defensie. Veel development teams richten inmiddels
hun CI/CD pipeline in om met automatische tools gebruikte dependencies te analyseren, en deze te
vergelijken met kwetsbaarheden die als CVE bekend zijn.

Dit is een goed gebruik. Helaas moeten we constateren dat er onder developers een gebrek aan
bewustzijn is over wat deze tools doen, en wat meldingen betekenen. Wanneer een CVE gemeld wordt
door een tool als [https://owasp.org/www-project-dependency-check/], is het nog
altijd aan een developer om deze melding te analyseren, en te bepalen wat de impact en benodigde
mitigatie is.

Er zijn grofweg vier soorten vervolgstappen:

1. Ongeacht of de CVE-melding terecht is of niet, is er een simpele oplossing door een mogelijk
kwetsbare dependency te upgraden naar een versie die de CVE niet bevat, zonder enige
compatibiliteitsproblemen.

2. De CVE-melding mag als false positive worden aangemerkt en onderdrukt worden in de
scanning tool.

3. De CVE-melding is terecht, maar een nieuwere versie van de dependency in kwestie heeft
compatibiliteitsproblemen met de bestaande software.

4. De CVE-melding is terecht, maar er is geen simpele oplossing in de vorm van een dependency
upgrade, bijvoorbeeld omdat die dependency niet actief onderhouden wordt.

In de praktijk zijn de meeste developers te motiveren om structureel optie 1toe te passen. Optie 2 zou
alleen moeten volgen uit onderzoek dat uitwijst dat de CVE inderdaad niet van toepassing is (bijv.
omdat deze alleen geldt bij specifiek gebruik van de dependency). Developers moeten de verleiding
weerstaan, om voor optie 2 te kiezen om van CVE-meldingen af te komen die ze niet direct eenvoudig
kunnen oplossen. Die verleiding bestaat, doordat opties 3 en U een significant grotere investering van
tijd en moeite vereisen. Mogelijk moet technical debt eerst worden ingelost, moet er overgestapt
worden op een alternatief voor de dependency, of moet er gekeken worden naar een fork, of naar
actieve contributie aan een oplossing voor de CVE in de dependency.

JDriven raadt developers daarom aan om gemelde CVE’s serieus te nemen, en de tijd te nemen om ze
te doorgronden. Door technical debt bij te houden, kennis te delen, security experts te betrekken, en
actief betrokken te zijn bij (interne en externe) software dependencies, houden we onze software veilig.

ADOPT

DevEx, afgeleid van Developer Experience, is een cruciaal facet van softwareontwikkeling dat de
algemene ervaring van ontwikkelaars tijdens het werken aan een project of in een specifieke
ontwikkelingsomgeving omvat. Het is gericht op de bruikbaarheid van ontwikkelingstools, efficiénte
workflows, duidelijke documentatie, en de tevredenheid en productiviteit van ontwikkelaars.

Binnen de context van softwareontwikkeling is DevEx de sleutel tot het optimaliseren van processen en
het bevorderen van een positieve werkomgeving voor ontwikkelaars. Door te zorgen voor intuitieve
tools, gestroomlijnde workflows en effectieve ondersteuning, draagt het bij aan het versnellen van
ontwikkelingscycli en het leveren van hoogwaardige softwareproducten. Het is de brug die
ontwikkelaars verbindt met de mogelijkheden van technologie, en het stimuleert innovatie in de
dynamische wereld van softwareontwikkeling.

© 2024 JDriven Tech Radar: Technieken | 12

https://www.mitre.org/focus-areas/cybersecurity
https://www.cve.org/
https://owasp.org/www-project-dependency-check/

Prompt Engineering

ADOPT

Prompt engineering is een discipline die draait om het vormgeven van nauwkeurige, effectieve
aanwijzingen voor door Al aangedreven modellen, zoals GPT-X (Generative Pre-trained Transformer).
Deze aanwijzingen sturen de reacties van het Al-model in de richting van het gewenste resultaat. Het is
een proces dat experimenteren, iteratie, verificatie en afstemming omvat. Prompt engineering biedt
verschillende voordelen die het potentieel hebben om software-engineering te verbeteren:

* Versnelde Ontwikkeling
» Verbeterde Creativiteit
» Consistentie en Betrouwbaarheid

* Leren en Groeien

Prompt engineering stimuleert een cultuur van continu leren en groeien. Ontwikkelaars kunnen
modelreacties analyseren, hun aanwijzingen aanpassen en hiervan leren. Het verstrekken van deze
inzichten aan de makers van het Al-model kan resulteren in geoptimaliseerde modellen die betere en
robuustere resultaten opleveren. Hoewel het gebruik van Al-modellen snelle resultaten kan opleveren,
vereist het behalen van hoogwaardige resultaten een investering van tijd, moeite en het verwerven van
nieuwe vaardigheden.

1TFB NFC

TRIAL

1, TFB, NFC [https://estimation.lunarlogic.io#description] is een techniek om planningen binnen het
ontwikkelproces te verbeteren. Naarmate taken (backlog items in Scrum) complexer worden, nemen de
onzekerheden in tijdsplanning eveneens toe, tot een punt waar schattingen weinig tot geen betekenis
meer hebben. Een sprintplanning met teveel van dergelijke taken wordt onbetrouwbaar. Een stabiele
vooruitgang voor een project wordt hierdoor moeilijk te realiseren.

1, TFB, NFC neemt een diametraal andere houding aan in vergelijking met techieken als story points,
zonder helemaal van schattingen af te zien. Elke taak of story krijgt €én van de drie labels: 1 point, too
frighteningly big (TFB) of no faintest clue (NFC). Enkel taken die 1 story point hebben gekregen, zijn
beknopt genoeg. Ontwikkelaars kunnen deze taken direct oppakken en realiseren. Het meten van
velocity is dan simpelweg een kwestie van het tellen van het aantal afgeronde taken aan het einde van
de sprint. Taken met het label TFB zijn te groot om aan te werken, en dienen in refinement sessies te
worden opgesplitst. Taken met het NFC label bevatten nog te veel onduidelijkheden om op te splitsen
of in te schatten. Om beter inzicht in deze onduidelijkheden te krijgen, kan het team een spike of een
klein prototype bouwen om meer zicht op het probleem te krijgen.

Wij hebben er voor gekozen om 1, TFB, NFC in de trial ring te plaatsen. Het maakt het meten van
velocity makkelijk, omdat alle taken dezelfde waarde hebben. Teams die veel tijd kwijt zijn aan
refinements, of regelmatig sprintdoelen missen, kunnen deze techniek gebruiken om meer realistische
doelen te stellen.

Wij realiseren ons dat deze eenvoudige classificatie in sommige gevallen te grof is en het
planningsproces kan hinderen. Wij moedigen teams daarom aan om het idee verder te verkennen, en
te kijken waar het concept gebruikt kan worden om hun routines te verbeteren.

© 2024 JDriven Tech Radar: Technieken | 13

Commit. Develop. Share.

N

https://estimation.lunarlogic.io#description

g

TRIAL

Inner source verwijst naar het toepassen van open source principes binnen een organisatie. Het gaat
erom de samenwerkende, transparante en gedecentraliseerde aanpak die vaak wordt gezien in open
source projecten toe te passen op de interne softwareontwikkeling van de organisatie. Het is een
alternatief op closed source, waarbij normaliter repositories enkel beschikbaar zijn voor het
verantwoordelijke team.

In een omgeving waar inner source wordt toegepast, zijn teams in staat binnen het bedrijf openlijk
code repositories in te zien. Dit bevordert het samenwerken, verbetert de codeanalyse, en geeft de
mogelijkheid voor het bijdragen van codewijzigingen via Pull Requests over verschillende projecten
heen. Het bevordert een grotere transparantie, stimuleert kennisdeling en stelt ontwikkelaars in staat
om over teams en afdelingen heen te werken.

Dit model kan de kwaliteit van software verbeteren, de ontwikkeling versnellen en een cultuur van
samenwerking en innovatie binnen de organisatie bevorderen door gebruik te maken van de
gezamenlijke expertise en inspanningen.

JDriven staat voor commit, develop, share met de opensourceprincipes in gedachten. Daarom vinden
wij dat organisaties moeten overwegen de broncode open te stellen voor interne ontwikkelaars.

TRIAL

Binnen het domein van software-observability en -monitoring is het opzetten van robuuste
alertmechanismen cruciaal. De onvoorspelbaarheid van events vereist nauwkeurige en responsieve
alerts, vaak gebouwd op complexe regels. Echter, de validatie van deze regels voltrekt zich vaak pas in
productie wanneer er onverwachts echte situaties voordoen.

De techniek 'unit testing voor alering' is ontworpen om de precisie van de regels en alerts te verhogen
door proactieve evaluatie en verfijning. Deze aanpak stelt teams in staat om regels grondig te
definiéren en te valideren voordat ze live getriggerd worden door incidenten. Dit verhoogt het
vertrouwen in de regels en alerts aanzienlijk.

Het primaire doel heeft een dubbele functie: het verminderen van valse alarmen en ervoor zorgen dat
echte problemen snel en nauwkeurig worden benadrukt. Door verschillende scenario’s en
omstandigheden te simuleren, kunnen teams beoordelen hoe goed hun rules presteren en deze
verfijnen voor optimale responsiviteit.

Belangrijke tools zoals Prometheus bieden speciale ondersteuning voor het testen van rules. Door deze
preventief te valideren, hebben we een aanzienlijke afname van valse positieven. Hierdoor is een

snellere en nauwkeurigere reactie op echte problemen mogelijk.

JDriven is van mening dat teams en organisaties die met rules en alerts werken, zouden moeten
beginnen met het toevoegen van unit tests voor alerts.

© 2024 JDriven Tech Radar: Technieken | 14

Sustainable software engineering

ASSESS

Groene software is een opkomende discipline op het snijvlak van klimaatwetenschap,
softwareontwerp, elektriciteitsmarkten, hardware en datacenterontwerp. Groene software is CO,
-efficiénte software, wat betekent dat het zo min mogelijk CO, uitstoot. Slechts drie activiteiten
verminderen de CO.-uitstoot van software; energie-efficiéntie, koolstofbewustzijn en hardware-
efficiéntie.

Een softwarearchitectuur die rekening houdt met koolstofefficiéntie is er één waarin ontwerp- en
infrastructuurkeuzes zijn gemaakt om het energieverbruik en dus de koolstofuitstoot te minimaliseren.
De meetinstrumenten en het advies op dit gebied worden steeds volwassener, waardoor het voor
teams haalbaar wordt om COj-efficiéntie te overwegen naast andere factoren zoals prestaties,
schaalbaarheid, financiéle kosten en veiligheid.

De cloud heeft nu een grotere ecologische voetafdruk dan de luchtvaartsector. Wij vinden dat we als
software engineers en architecten ook een verantwoordelijkheid hebben in het verminderen van deze
voetafdruk en het verbeteren van het klimaat. Door hierin bewuste keuzes te maken, kunnen we die
stappen ook zetten. Daarnaast hebben efficiénte systemen een bijkomend voordeel: minder resources
zorgt voor minder kosten.

© 2024 JDriven Tech Radar: Technieken | 15

Commit. Develop. Share.

N

g

HOLD

Developers en operations engineers hebben met de opkomst van cloud infrastructuur en virtualisatie
een oplossing gevonden voor de problemen van voor hun Big Ball of Mud monolieten. Het biedt de
mogelijkheid voor het opknippen van applicaties in microservices, wat meerdere voordelen kan bieden
boven een monoliet:

* Bij goed gescheiden functionaliteit kan een microservice een eenduidig doel dienen, wat de
cognitive load verlaagt.

* leder deel van de applicatie is los aan te passen en uit te rollen, zodat een functionele wijziging
slechts een klein deel van je draaiende software raakt.

* De infrastructuur voor applicatie-onderdelen, die meer grillige performance-eisen hebben, is
doelgericht op en af te schalen.

+ Code repositories zijn onderhoudbaar door en overdraagbaar tussen meerdere teams.
Microservices hebben echter ook een keerzijde:

* Developers moeten hun aandacht verdelen over meerdere bewegende delen in een delivery
pipeline en softwarelandschap.

* Interactie tussen de delen vindt plaats over HTTP, wat extra eisen stelt aan APl management en
security.

Bij een overstap op een microservices-architectuur is het niet vanzelfsprekend, dat de voordelen tot
uiting komen. Het risico bestaat, dat de software dan verwordt tot een zogenaamde Distributed
Monolith, en lijdt onder de nadelen van zowel de Big Ball of Mud monoliet als microservices.

Het risico om hierop uit te komen bestaat, wanneer een organisatie besluit een bestaande monoliet op
te splitsen in technische componenten, bijvoorbeeld omdat bestaande teams zijn opgedeeld in
technische expertise. Een symptoom van zo’n situatie is dat iedere functionele wijziging de technische
componenten van meerdere teams raakt. Dit noemen we wel tight coupling. Een andere situatie, die
we vaak zien voorkomen, is een architectuur-besluit dat ieder functioneel te onderscheiden onderdeel
sowieso z'n eigen microservice moet hebben. In dergelijke gevallen kan het zijn, dat een team voor
iedere functionele wijziging meerdere kleinere onderdelen moet aanpassen, wat veel extra werk en
kans op fouten met zich meebrengt.

JDriven adviseert organisaties om deze redenen om voorzichtig te zijn met het inzetten van
microservices, en allereerst te streven naar low coupling, high cohesion. In deze context kan het

[https://en.Wikipedia.org/wiki/Sing|e_responsibilitg_principle] goed van pas kan
komen: "Wat wijzigt om dezelfde redenen, zou samen moeten zijn". Een software-ontwerpmethode als
DDD, die begint bij het onderscheiden van functionaliteiten en het modelleren van bounded contexts
en context maps, kan verder helpen om de juiste knip te leggen. Als niet alle bovengenoemde mogelijke
voordelen van microservices verlangd zijn, is het het overwegen waard om dit eerst te implementeren
in een modulaire monoliet in plaats van microservices.

© 2024 JDriven Tech Radar: Technieken | 16

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle

Platforms

Assess Hold Assess Trial Adopt

10. OpenFGA w |I
1. Moderne platform v \'\ @
12. eBPF e
13. Azure container apps w
Trial
14. Cloud events w

@ New @ Existing

Cloud events

TRIAL

Cloud Events [https://cloudevents.io/] is een open standaard die is ontwikkeld om de compatibiliteit en
samenwerking tussen event-gedreven systemen in de cloud te verbeteren. Het biedt een uniforme
manier om events te specificeren, ongeacht de verschillende cloudplatformen, services of systemen
die betrokken zijn. Deze standaardisatie stelt organisaties in staat om events te beschrijven in een
formaat dat door verschillende cloudproviders kan worden begrepen en verwerkt, waardoor de
complexiteit van event-verwerking tussen systemen wordt verminderd.

Cloud Events zijn gebaseerd op een set van metadata en standaardformaten voor events beschreven
in JSON of YAML. De metadata van Cloud Events biedt een consistente en gestructureerde manier om
informatie over events vast te leggen. Dit omvat details zoals de identificatie van het event, de tijd
waarop het plaatsvond en de bron waar het event vandaan komt. Daarnaast biedt Cloud Events de
mogelijkheid om zelf optionele metadatavelden naast de standaard metadatavelden vast te leggen.

Cloud Events biedt flexibiliteit en draagbaarheid door een gemeenschappelijke taal te bieden voor het
beschrijven van gebeurtenissen, ongeacht de onderliggende technologie€n, protocollen en
infrastructuur. De voordelen van het implementeren van Cloud Events zijn onder meer een verbeterde
interoperabiliteit, verhoogde flexibiliteit en vereenvoudigde integratie tussen verschillende
cloudservices en applicaties. Dit stelt ontwikkelaars in staat om gebeurtenisgestuurde architecturen te
bouwen die gemakkelijk schaalbaar, flexibel en onderling uitwisselbaar zijn in verschillende
cloudomgevingen.

JDriven zet Cloud Events op Trial omdat wij denken dat het het onderzoeken waard is voor met name
grote enterprise-omgevingen, die baat hebben bij een bredere standaard.

© 2024 JDriven Tech Radar: Platforms | 17

Commit. Develop. Share.

N

https://cloudevents.io/

g

ASSESS

Azure Container Apps is een nieuwe service op Microsoft Azure die het inzetten en schalen van
containerized applicaties in een serverless omgeving vereenvoudigt. Het is gepositioneerd tussen Azure
App Service, dat vooral gericht is op eenvoudige webapplicaties, en Azure Kubernetes Service, wat een
beheerd Kubernetes-platform is.

Container Apps is gebouwd op Kubernetes, KEDA en Dapr. Hierdoor maakt het event-driven
applicatiearchitecturen mogelijk door ondersteuning van geavanceerde autoscaling (inclusief scale-
to-zero en traffic splitting), ondersteuning voor langlopende processen en achtergrondtaken. Er is
geen directe toegang tot de Kubernetes API’s beschikbaar.

Wij denken dat Azure Container Apps een goed alternatief is voor teams die Azure App Service
ontgroeid zijn, maar niet hun eigen Kubernetes-cluster willen of hoeven te beheren. Daarom plaatsen
wij Azure Container Apps in Assess.

ASSESS

eBPF (extended Berkeley Packet Filter) is een techniek om programma’s in een sandbox binnen de
Linux-kernel te draaien, door middel van een Just-in-Time compiler. Dit stelt gebruikers in staat om
programma’s te schrijven die systeem- en netwerkgedrag observeren en filteren, of extra
veiligheidsmaatregelen toepassen, zonder restricties op systeemtoegang. De JIT-compiler zorgt ervoor
dat de programma’s niet buiten de geprogrammeerde context kunnen opereren. Bovendien verifieert
de compiler bepaalde eigenschappen voor veiligheid en "liveness" voordat een eBPF-programma
wordt uitgevoerd. Traditioneel wordt dergelijke aangepaste kernelfunctionaliteit verkregen door het
schrijven van custom patches voor de Linux-kernel, of het schrijven van kernelmodules. Het nadeel van
deze methoden is dat dit erg bewerkelijk is en de stabiliteit van het gehele besturingssyteem in gevaar
kan brengen. Bovendien is de in-kernel APl van Linux niet stabiel, waardoor dergelijke aanpassingen
vaak voor een beperkt aantal kernelversies werken. Daardoor is frequent onderhoud en een grote
kennis van de kernel nodig.

We hebben er dit najaar voor gekozen deze techniek op Assess te zetten. eBPF lost een beperkte klasse
van problemen op, met name voor organisaties die een grote hoeveelheid infrastructuur beheren of
speciale eisen aan veiligheid stellen. Ook vereist het schrijven van dergelijke programma’s veel
specialistische kennis. Een gebruiker heeft daarnaast specifieke rechten op een doelsysteem nodig, en
een Linux-kernel waarbij de JIT-functionaliteit beschikbaar is gemaakt. Deze functionaliteit is daardoor
meestal alleen beschikbaar voor organisaties die hun eigen systemen beheren; publieke
cloudproviders zullen deze functionaliteit veelal uitgeschakeld hebben voor gebruikers om hun eigen
infrastructuur te beschermen.

© 2024 JDriven Tech Radar: Platforms | 18

Moderne platform

ASSESS

Het Moderne Platform is een SaaS-oplossing gebouwd bovenop de open-source software
OpenRewrite. Het biedt geautomatiseerde code-refactoringstools waarmee ontwikkelaars met een
eenvoudige klik of CLl-opdracht snel en moeiteloos complete codebases kunnen migreren. Dit wordt
gedaan met behulp van meegeleverde recepten die bijvoorbeeld Spring Boot-apps kunnen upgraden
van versie 2 naar 3.

In onze Tech Radar hebben we eerder OpenRewrite genoemd. Een SaaS-platform dat de sterke punten
van OpenRewrite combineert met tools om de ervaring van ontwikkelaars rond het gebruik van
OpenRewrite te verbeteren, is iets waar we positief tegenover staan. Concurrenten zoals Snyk,
Dependabot en Sonar waarschuwen alleen voor softwarekwetsbaarheden en bevindingen. Wat het
Moderne Platform voor ons vooral interessant maakt, is dat het deze problemen ook onmiddellijk
oplost, waardoor ontwikkelaarstijd vrijkomt.

Vanwege onze beperkte ervaring met het Moderne Platform zijn we nog niet zeker of het geschikt is
voor missiekritiecke toepassingen. Wanneer de CLI niet wordt gebruikt, maakt een Moderne-agent
verbinding met in-house code- en artefactopslagplaatsen, wat voor sommige organisaties een
obstakel kan zijn. Bovendien hangt de effectiviteit van het platform af van het aantal recepten en de
taalondersteuning die ze hebben, iets waar ze momenteel hard aan werken om uit te breiden.

OpenFGA

ASSESS

OpenFGA [https://openfga.dev/] is een autorisatie-oplossing die een flexibele benadering van
toegangscontrole biedt. OpenFGA ondersteunt standaard role-gebaseerd access control (RBAC),
maar biedt interessant genoeg ook de mogelijkheid voor fine-grained toegangscontrole.

OpenFGA maakt gebruik van een relatie-gebaseerd access control (ReBAC), waarmee het mogelijk is
om machtigingen te definiéren op basis van de relatie van een gebruiker met een resource, niet alleen
op basis van hun rol. Dit maakt een fine-grained autorisatie mogelijk, wat een groot voordeel is ten
opzichte van RBAC, dat omslachtig kan worden voor ingewikkelde scenario’s. Deze relatiemodellen
kunnen automatisch worden geimplementeerd en via code worden beheerd in plaats van handmatig.
De gebruikte modelleringstaal is expressief genoeg om een breed scala aan autorisatiebehoeften aan
te kunnen, terwijl het nog begrijpelijk blijft voor niet-programmeurs. De regelmodelleringstaal van
OpenFGA introduceert echter een nieuw concept voor ontwikkelaars, wat kan leiden tot een leercurve
bij het overschakelen naar de aanpak van OpenFGA.

Dankzij de steun van de Cloud Native Foundation heeft het goede ondersteuning en meerdere SDK’s
voor integratie. Hoewel het actief wordt onderhouden, is er mogelijk minder documentatie of
community support beschikbaar omdat het een relatief nieuw project is in vergelijking met sommige
gevestigde access control oplossingen.

OpenFGA is ontworpen voor prestaties en om efficiént autorisatie controles uit te voeren voor
grootschalige applicaties met veel gebruikers en resources. Het implementeren van OpenFGA voegt
een extra laag toe aan de applicatiearchitectuur en het is niet bekend hoe de prestaties zich
verhouden tot traditionele platforms voor toegangscontrole. Als de autorisatiebehoeften eenvoudig
zijn, weegt de extra complexiteit mogelijk niet op tegen de voordelen.

De combinatie van een nieuw autorisatieconcept en een uitgebreid platform rechtvaardigt een plek in
de assess ring voor OpenFGA.

© 2024 JDriven Tech Radar: Platforms | 19

Commit. Develop. Share.

v

https://openfga.dev/

g

Assess
15. GitHub Codespaces
16. Claude 3
™~ 21. Thunderdome Dev

24. Konsist

. Hold
N
™, \ \
AN 17. Diffblue Cover
25. JobRunr
N .
\ Trial
| 18. ChatGPT
| | | 20. Godana
Adopt Trial Assess Hold
22, jlink
@ New @ Existing
23. Maven Build Cache Extension
Adopt

19. Vector Databases

ADOPT

Vector databases zijn gespecialiseerde databases die efficiént hoog-dimensionale vectoren opslaan,
indexeren en ophalen. Deze vectoren worden gebruikt voor semantisch zoeken naar tekst,
afbeeldingen en meer, waardoor toepassingen zoals ChatGPT en GitHub Copilot kunnen
functioneren.

Bij JDriven zijn we van mening dat bedrijven zouden moeten overwegen om vector databases te
gebruiken wanneer ze de mogelijkheden van semantisch zoeken verkennen of zich begeven in het Al-
domein.

Hoewel er talloze leveranciers van vector databases zijn, zijn de meeste, op basis van onze ervaring,
vergelijkbaar, zonder groot onderscheidend kenmerk. Daarom hebben we ervoor gekozen om elk van
deze databases niet afzonderlijk op te nemen in onze Tech Radar. De meest populaire databases zijn
Pinecone, Chroma, pgVector en Weaviate. Bovendien hebben bedrijven zoals Elasticsearch, Redis en
Neoltj vectorfunctionaliteiten geintegreerd in hun gereedschapskist.

© 2024 JDriven Tech Radar: Tools | 20

ChatGPT

TRIAL

Het bekende taalmodel dat in staat is om complexe gesprekken te voeren met gebruikers, is intussen
meer dan een jaar oud. ChatGPT kan ontwikkelaars helpen bij het oplossen van problemen,
verbeteren van code, detecteren van bugs, uitvoeren van statische codeanalyse en meer.

Echter kunnen we niet blindelings vertrouwen op ChatGPT. Er zijn een aantal redenen om zorgvuldig
om te gaan met de resultaten. Allereerst zal de tool code met vertrouwen presenteren, zelfs als het
fouten bevat, niet geoptimaliseerd is of constructies gebruikt waarvoor betere alternatieven
beschikbaar zijn. De gratis versie heeft gegenereerde code opgeleverd met problemen zoals delen
door nul, n+1 selectieproblemen en refactors die de kwaliteit van de code verminderden. De
gegenereerde code door de betaalde versie is van hogere kwaliteit, maar nog steeds niet vlekkeloos.

Naast functionele problemen kan de tool een beveiligings- of privacyrisico vormen. Chatgeschiedenis
wordt gelogd en aan het model gevoed. Daarom is het belangrijk om alleen code bloot te stellen die
van generieke aard is en geen bedrijfsspecifieke details of gevoelige informatie bevat. Er is geen
garantie dat gegevens veilig zijn.

Al met al is ChatGPT een nuttige en capabele tool, vooral voor het leren van een nieuwe taal, concept
of framework. Gebruik het om aanwijzingen te krijgen voor het oplossen van problemen, maar
vertrouw niet blindelings op de oplossingen zonder precies te weten wat de gegenereerde code doet.
Gebruik het voor refactoring, maar houd er rekening mee dat het mogelijk geen passende patronen of
benaderingen toepast.

jlink
TRIAL

jlink is een tool om een op maat gemaakte Java Runtime Environment (JRE) te bouwen. Deze tool doet
dit door het strippen van componenten uit de JRE die de doelapplicatie niet nodig heeft. Te denken
valt onder andere aan overbodige modules, documentatie en losse tools voor de Java-omgeving. Een
op maat gemaakte JRE biedt twee voordelen: het leidt tot bruikbare artefacten (zoals Docker images)
van een kleiner formaat, en vermindert de hoeveelheid potenti€le ingangen voor aanvallen. Een kleiner
formaat images leidt tot kortere uitroltijden, met name binnen cloud omgevingen, en mogelijk ook tot
lagere kosten bij het beheren en hosten van images en omgevingen. Door onnodige modules niet toe te
voegen, kunnen kwaadwillende partijen geen gebruik maken van mogelijke veiligheidslekken in deze
modules. Dergelijke lekken kunnen in catastrofale gevallen leiden tot privilege escalation en niet-
geautoriseerde datatoegang.

We hebben jlink onder Trial ingedeeld, omdat wij duidelijke voordelen zien bij het gebruik hiervan.
Zoals met praktisch alle tooling zijn er echter ook een aantal keerzijden. De tool om te bepalen welke
modules nodig zijn voor een gegeven applicatie, jdeps, geeft niet altijd een eenduidige rapportage van
welke modules nodig zijn. Vaak moet met de hand nog een aantal modules aan de lijst worden
toegevoegd. Een serieuzer probleem is dat afwezigheid van benodigde modules kan leiden tot
cryptische foutmeldingen en veranderd gedrag van de applicatie. Dit zorgt ervoor, dat een op maat
gemaakte JRE een klein risico kan vormen, wat het voor sommige toepassingen ongeschikt maakt.

© 2024 JDriven Tech Radar: Tools | 21

Commit. Develop. Share.

v

TRIAL

[https://maven.apache.org/extensions/maven-build-cache-extension/] is een extensie voor
Maven (beschikbaar vanaf versie 39) waarmee je je Maven builds efficiénter kunt maken door slim
gebruik te maken van caching (vergelijkbaar met de Gradle Build Cache).

De build cache kan op verschillende momenten in het build-proces de outputs, zoals gegenereerde
code of gecompileerde classes, in een cache plaatsen. Als op een later moment de build nogmaals
wordt uitgevoerd met (deels) ongewijzigde inputs, kunnen de eerder gecachete outputs worden
hergebruikt. Hierdoor kunnen delen van de build, zoals het compileren van code en het uitvoeren van
tests, worden overgeslagen, waardoor de totale buildtijd afneemt. Bijkomend voordeel is dat build
caches ook gedeeld kunnen worden door gebruik te maken van een remote cache.

Door de Maven Build Cache extension te introduceren is het in veel gevallen mogelijk om de buildtijd
van je Maven-projecten significant te verminderen. Doordat dit een vrij nieuwe feature van Maven is,
bestaat de mogelijkheid dat nog niet elke third-party Maven-plugin hier goed mee samenwerkt.
Daarnaast is elk Maven-project anders, dus zal het enig uitzoekwerk kosten om de build cache op de
juiste manier te laten werken. Een verkeerd geconfigureerde build cache kan leiden tot instabiele, niet-
reproduceerbare builds. Om deze redenen plaatsen wij het in Trial.

TRIAL

Qodana is een Static Code Analysis tool van JetBrains. Het wordt meegeleverd met de IntelliJ IDE,
maar moet apart geactiveerd worden. Los van IntelliJ-integratie kent het veel CI/CD- en IDE-
integraties en kan het o.a. Java, Kotlin, JavaScript en TypeScript codebases scannen. Het biedt een
Qodana Cloud dashboard voor het in kaart brengen van de codekwaliteit over meerdere projecten.

Na een paar jaar als preview beschikbaar te zijn geweest, is Qodana officieel uitgekomen in 2023. Het
kent een gratis community-model, maar voor JavaScript/TypeScript- en Spring-ondersteuning ben je
aangewezen op een betaald model. Dat betaalde model is echter ook wat het interessant maakt t.o.v.
SonarQube, want in Qodana betaal je niet voor de hoeveelheid lines of code (LoC), maar voor het
aantal actieve committers. Bovendien zit de CI/CD-integratie bij Qodana in de gratis variant. Dat
betekent dat, afhankelijk van de aard van je project en hoe het onderhouden wordt, Qodana
aanzienlijk goedkoper zou kunnen uitvallen. Het is de moeite waard om die vergelijking te maken en de
tool te proberen.

ASSESS

[https://en.wikipedia.org/wiki/Claude_(language_model)] is een foundational Al service van
Anthrophic, een afsplitsing van OpenAl, met een sterke focus op gebruiksveiligheid. Het belangrijkste
concept achter hun model is Constitutional Al. Dit systeem tracht behulpzaamheid te optimaliseren en
schadelijkheid te minimaliseren in de uitkomsten. Constitutional Al gebruikt een set met regels om
misbruik van de Al technologie te voorkomen. Deze set wordt gebruikt om een metamodel mee te
trainen. Dit metamodel wordt vervolgens gebruikt om het trainingsproces van het reguliere model te
begeleiden, zodat het model leert om geen schadelijke inhoud te genereren. Dit werkt door het
metamodel iteratief kritiek en suggesties voor verbetering te laten genereren, zodat de uiteindelijke
uitkomst de "grondwetten" niet meer overtreedt. Om de resultaten te valideren, wordt Claude getest
tegen een grote set van bewust kwaadaardige prompts.

Wij kiezen ervoor om Claude in de assess ring te plaatsen. Op dit moment kan de web Ul niet vanuit de
EU gebruikt worden, waardoor het lastig is om er gemakkelijk mee te experimenteren. Ook kunnen de

© 2024 JDriven Tech Radar: Tools | 22

https://maven.apache.org/extensions/maven-build-cache-extension/
https://en.wikipedia.org/wiki/Claude_(language_model)

gekozen regels, ondanks dat deze over het algemeen als verstandig worden beschouwd, nog steeds
voor een bevooroordeelde (biased) uitkomst zorgen. Dergelijke uitkomsten zullen ook niet altijd stroken
met bepaalde culturele patronen. Bovendien is er een dunne scheidslijn tussen het geven van
onschadelijke en van ontwijkende antwoorden. In het door Anthropic gepubliceerde onderzoek
[https://www.anthropic.com/research] lijkt dit redelijk onder controle, alhoewel gebruikers wordt
aangeraden zelf na te gaan in hoeverre deze technologie toepasbaar is voor hun (specifieke)
doeleinden.

GitHub Codespaces

ASSESS

GitHub Codespaces [https://github.com/features/codespaces] is een Cloud Development Environment
(CDE) die ontwikkelaars voorziet van virtual machines om op te ontwikkelen. Het maakt gebruik van
devcontainers [https://containers.dev/], zodat ontwikkelaars hun eigen lokaal draaiende IDE kunnen
gebruiken. Dit is een op Docker gebaseerde technologie, en gebruikt Docker images waar de
benodigde toolchain op geinstalleerd is. Hiermee worden problemen met reproduceerbaarheid
voorkomen, omdat alle ontwikkelaars dezelfde omgeving gebruiken. Omdat alle ontwikkelaars
dezelfde toolchain, configuratie en platform gebruiken, is het onboarden van nieuwe teamleden
eenvoudig.

GitHub Codespaces heeft uitstekende support voor Visual Studio Code via een extensie.
Ondersteuning voor de JetBrains IDE’s ligt op dit moment nog wat achter. Bovendien moeten
gebruikers JetBrains Gateway [https://www.jetbrains.com/remote-development/gateway/] gebruiken.

We hebben ervoor gekozen om GitHub Codespaces in de assess ring te plaatsen, omdat het naast
bestaande workflows kan worden gebruikt, maar deze niet vervangt. Daarom is het uitproberen ervan
redelijk risicoloos. We geloven dat een gestandaardiseerde ontwikkelomgeving de productiviteit van
ontwikkelaars kan verhogen. Wel kan een slechte internetverbinding mogelijk voor een minder
vloeiende ervaring zorgen.

Aangezien GitHub Codespaces een dienst vanuit GitHub is, is het gebruiksgemak het grootst wanneer
de gebruikte code repository daar reeds gehost is. Bovendien zijn er kosten verbonden aan de tijd dat
een virtual machine in gebruik is. Ook voor opslag van een codespace moet betaald worden zolang
deze niet verwijderd wordt. Het integreren met on-premise diensten, bijvoorbeeld voor testen, kan
uitsluitend via een VPN worden gedaan.

Ten slotte kan het raadzaam zijn om ook te kijken naar oplossingen van andere partijen voor het
hosten van developeromgevingen.

Konsist

ASSESS

Konsist [https://docs.konsist.lemonappdev.com/getting-started/readme] is een static code-analyzer library voor
Kotlin die helpt codeconventies te garanderen en gedefinieerde architecturele grenzen kan
controleren. Controles worden uitgevoerd in unittests en kunnen als zodanig worden uitgevoerd tijdens
pull requests om de architectuur van een project te beschermen. Konsist ondersteunt Kotlin-projecten,
waaronder Android, Spring en Kotlin Multiplatform, terwijl ArchUnit, een vergelijkbare tool, alleen
(JVM]) bytecode-analyse ondersteunt.

Wij bij JDriven geloven in codekwaliteit en een helder gedefinieerde software-architectuur. Konsist is
een zeer nuttig hulpmiddel in onze gereedschapskist om codeconventies en architecturale grenzen te
formaliseren en te verifiéren. Omdat Konsist nog in de kinderschoenen staat, houden we de
ontwikkeling ervan in de gaten voordat we de adoptie ervan volledig aanraden.

© 2024 JDriven Tech Radar: Tools | 23

Commit. Develop. Share.

v

https://www.anthropic.com/research
https://github.com/features/codespaces
https://containers.dev/
https://www.jetbrains.com/remote-development/gateway/
https://docs.konsist.lemonappdev.com/getting-started/readme

g

ASSESS

[https://thunderdome.dev/] is een opensource-samenwerkingstool. Een
onderscheidende feature is als planning poker-tool. Het kan ook worden gebruikt bij andere
processen, zoals retrospectives, team checkins, en feature/story mapping. Het proces van planning
poker werkt goed in de context van persoonlijke aanwezigheid van teamleden. In een hybride
werkomgeving mist die context, waardoor het ontwikkelteam het proces op een andere manier moet
vormgeven. Thunderdome.dev zorgt bij planning poker voor een basisstructuur waarmee dit
makkelijker wordt.

Aan de ene kant is het een erg toegankelijke tool, aan de andere kant is de toepassing sterk afhankelijk
van de werkwijze en behoeftes van het ontwikkelteam. We plaatsen Thunderdome.dev daarom in
Assess. Houd bij een assessment rekening met alle features van deze tool. Met name voor de
mogelijkheid als aanvulling op, of vervanging van een gevestigde tool als Jira.

HOLD

[https://www.diffblue.com/products/], een geautomatiseerde tool voor het genereren van
unittesten voor Java code, toont sterke punten in het begrijpen van de te testen code en het creéren
van geschikte mocks. Echter, het vermogen om complexe mockdata te genereren is beperkt, en de
benadering van het genereren van testen komt mogelijk niet overeen met bestaande projectstijlen.

Hoewel Diffblue Cover nuttig kan zijn voor het genereren van boilerplatecode en het opzetten van
eerste testen, zal het handmatige testen niet volledig vervangen. Tevens is de compatibiliteit beperkt
tot specifieke versies van Spring, Java en JUnit, en het heeft moeite met methoden zonder parameters
of klassen zonder constructors. Verder kan Diffblue Cover niet worden uitgevoerd op een heel project
of zelfs op pakketten, wat de toepasbaarheid ervan beperkt.

Daarom wordt Diffblue Cover in het kwadrant Hold geplaatst van deze editie van onze Tech Radar.

HOLD

[https://www.jobrunrio/] is een Java-library voor het dracien en aansturen van
achtergrondprocessen. Met JobRunr kun je jobs plannen, batches uitvoeren, of workflows maken met
behulp van Java Lambda-functies, met ingebouwde functies voor het opnieuw proberen van jobs die
gefaald zijn. JobRunr komt met een webinterface waarmee je de jobs in de gaten kunt houden, jobs
kunt aansturen, en het kan je inzicht geven wanneer er fouten zijn opgetreden. Alhoewel de gratis
versie erg interessant is en het overwegen waard om te gebruiken, hebben we JobRunr op Hold
geplaatst vanwege de pro versie. JobRunr Pro is namelijk niet opensource en er zijn maar een aantal
mensen die eraan werken, wat voor wat risico zorgt dat sommige bedrijven liever vermijden. Dus ons
advies is om hier zorgvuldig een keuze te maken.

© 2024 JDriven Tech Radar: Tools | 24

https://thunderdome.dev/
https://www.diffblue.com/products/
https://www.jobrunr.io/

© 2024 JDriven Tech Radar: Tools | 25

I Commit. Develop. Share.

Commit.
Develop.
Share.

	JDriven Tech Radar Voorjaar 2024: Onze kijk op recente ontwikkelingen in het veld
	Introductie
	Tech Radar
	Indeling

	Talen & frameworks
	Quarkus
	Structured concurrency
	Backstage
	HTMX
	ktor
	Langchain4j
	No frameworks
	Jakarta 11
	Jetbrains compose
	Terraform CDK
	Vector API
	OpenTofu

	Technieken
	Automatic merging of dependency updates
	CVE awareness
	Dev Ex
	Prompt Engineering
	1 TFB NFC
	Inner Source
	Unit testing voor alerting
	Sustainable software engineering
	Distributed Monolith

	Platforms
	Cloud events
	Azure container apps
	eBPF
	Moderne platform
	OpenFGA

	Tools
	Vector Databases
	ChatGPT
	jlink
	Maven Build Cache Extension
	Qodana
	Claude 3
	GitHub Codespaces
	Konsist
	Thunderdome Dev
	Diffblue Cover
	JobRunr

