Onze kijk op recente ontwikkelingen in het veld

be editie

Commit to know.

Develop to grow.

Share to show.







Introductie

Onze ervaren specialisten werken dagelijks mee aan tal van softwareprojecten in Nederland en zijn
betrokken in wereldwijde community’s. Halfjaarlijks komen wij vanuit JDriven bij elkaar om te
bespreken wat wij aan nieuwe trends en ontwikkelingen zien. Deze trends proberen wij te vangen in
een technologieradar. Elke editie van de radar laat verschuivingen zien t.o.v. een vorige editie. Een
verschuiving kan betekenen dat wij een technologie interessanter zien worden waar van toepassing, of
juist minder geschikt ongeacht de toepassing. Indien een trend niet meer voorkomt in een latere editie,
dan zijn er geen nieuwe ontwikkelingen en/of ervaringen die ons eerdere beeld zouden hebben
bijgesteld. In dit document willen we toelichten welke verschuivingen we de afgelopen periode hebben
waargenomen, om op basis daarvan weer richting te geven aan wat wij inzetten en aanraden.

Tech Radar

Het idee voor het opstellen van een tech radar komt voort vanuit Thoughtworks. Zij dragen al langer
periodiek met een radar hun visie uit op nieuwe trends en ontwikkelingen. Bovendien raden zij iedereen
aan een eigen radar op te stellen [https://www.thoughtworks.com/radar/byor].

Bij JDriven onderschrijven we dat. Het opstellen van een Radar is een leerzame en waardevolle
ervaring waarin onderling kennis wordt gedeeld en een technisch bewustzijn wordt gecreéerd. Wij
geloven erin dat specialisten zelf in staat moeten zijn om het gereedschap voor hun werkzaamheden
samen te stellen. Met het opstellen van een radar faciliteer je discussies over technologie, om als
organisatie de juiste balans te vinden in wat voor risico’s en voordelen innovatie kan opleveren. Wij
kunnen u helpen dit op te starten binnen uw organisatie. Laat uw teams elkaar inspireren tot innovatie
en gezamenlijk komen tot een set aan technologieén en technieken die de ontwikkeling in uw bedrijf
versnellen.

Indeling

Een radar bestaat uit kwadranten en ringen, met daarbinnen blips om interessante technologieén en
technieken aan te duiden.

De kwadranten verdelen de verschillende onderwerpen in categorieén.

+ Talen & frameworks die je ondersteunen bij de ontwikkeling van software

+ Platformen waarop je software kunt uitvoeren

« Technieken die je helpen betere software te maken

+ Tools ter ondersteuning van je ontwikkel- en delivery-proces
De ringen in elk kwadrant geven aan in welk stadium van adoptie wij denken dat die technologie zich
bevindt.

+ Adopt - Wij raden sterk aan deze technologie te gebruiken, waar van toepassing.

« Trial - Interessant om alvast ervaring mee op te doen (in een project dat het risico kan dragen).

 Assess - Goed om beter te begrijpen en toekomstige impact in te schatten, maar nog niet om
toe te passen.

+ Hold - Niet (meer) gebruiken.

In de volgende secties zullen we onze kijk op de recente ontwikkelingen per kwadrant toelichten.

© 2022 JDriven Tech Radar: Introductie | 1

Commit. Develop. Share.

N



https://www.thoughtworks.com/radar/byor

r

HoLD RssESS TRIAL

ADOPT TRIAL RssEss HoLp

Kustomize
OpenTelemetry
Spring Boot Migrator

ASSESS
Diffblue Cover
GitHub copilot
Maven Daemon

Tools Talen & frameworks

ADOPT ADOPT

CNCF Trailmap Kotlin coroutines

Datafaker

Renovate TRIAL

Spotless Spring Modulith
Unity3D

TRIAL

Error Prone Support ASSESS

Gradle Kotlin DSL F#

Virtual threads

SigNoz
Platforms Technieken
ADOPT ADOPT
- Testing diamond
Tinkering
TRIAL
GraalVM TRIAL
Low-code
ASSESS Mob Programming
On-premise SBOM
WebAuthn
HOLD Weighing developer experience
CircleCl

ASSESS

Data Oriented Programming
Linked data

Risk storming

HOLD
SAFe

© 2022 JDriven

Tech Radar: Introductie | 2




Talen & frameworks

ADOPT

1. Kotlin co-routines

TRIAL

2. Spring Modulith

o 3. Unity3D

ASSESS

4. F#
5. Virtual threads

ADOPT TRIAL ASSESS HOLD

Kotlin coroutines

ADOPT

Kotlin Coroutines [https://kotlinlang.org/docs/coroutines-guide.html] is een first-class Kotlin library voor het
schrijven van leesbare en onderhoudbare asynchrone, non-blocking code. De library is ontwikkeld
door JetBrains en bouwt verder op de low-level suspending function APIs in Kotlin.

Wanneer je een applicatie schrijft in Kotlin waarbij je gebruikmaakt van asynchrone, non-blocking
code, dan is Coroutines de de facto standaard. Het is stabiel, wordt goed ondersteund door IntelliJ en
maakt het schrijven van multi-threaded code een stuk eenvoudiger en beter onderhoudbaar.

Spring Modulith
TRIAL
Spring Modulith [https://spring.io/projects/spring-modulith]

Domain Driven Design heeft developers doen inzien dat softwarearchitectuur kan en moet helpen met
het faciliteren van de evolutie van softwaresystemen bij wijzigende inzichten in business requirements.
Microservices kunnen daarbij ingezet worden om functionele units te isoleren, maar dat introduceert
uitdagingen op het gebied van service-orkestratie en HTTP-communicatie. Dit heeft developers doen
heroverwegen of diezelfde modulariteit is aan te brengen en af te dwingen in monolithische
applicaties.

Spring biedt als framework technische stereotypen zoals @Controller, @Repository, etc, zonder een
mening op te leggen over hoe componenten die er gebruik van maken van elkaar afhankelijk zijn. Met

© 2022 JDriven Tech Radar: Talen & frameworks | 3

Commit. Develop. Share.

N



https://kotlinlang.org/docs/coroutines-guide.html
https://spring.io/projects/spring-modulith

g

Spring Modulith beoogt het juist wel een domain-aligned structuur aan te moedigen in een Spring Boot
applicatie. In de praktijk lijkt dit te betekenen dat een goed opgezette Spring Boot & Modulith
applicatie kandidaten voor dependency injection aan banden legt op basis van package structure
conventies. Daarbij biedt het wel weer manieren om moduledetectie aan te passen t.o.v. die
conventies.

Het borduurt voort op ArchUnit in hoe het afhankelijkheden test en beperkt, maar het is onduidelijk of
het daarbij ook ingrijpt op het runtime bootstrap-proces van een applicatie, of dat het slechts hulp
biedt bij de integratietests en - nog een goede feature - Clt architectuurdocumentatie in AsciiDoc
genereert. Spring Modulith biedt een nieuwe manier voor het integratietesten van individuele modules,
die naar verwachting een stuk sneller zal uitpakken dan het gebruik van @SpringBootTest, omdat het
alleen de modules instantieert die voor de test relevant zijn.

Tevens stuurt Spring Modulith aan op het gebruik van event-driven pubsub voor loose coupling. Dit zou
niet de enige aan te bevelen manier van loose coupling moeten zijn, en wederom is het niet duidelijk of
dit een systeem is dat moet helpen bij integratietests, of dat het ook at runtime in een applicatie kan
worden ingezet.

Met dit in het achterhoofd is het het onderzoeken waard in hoeverre Spring Modulith kan helpen met
modulariteit in monolithische applicaties.

TRIAL

Unity3D is een marktleider op het gebied van game engines. Unity is uitgebracht in 2005, initieel
exclusief voor macOS, maar is al jaren ook beschikbaar op Linux en Windows. Over de jaren heen
heeft Unity3D zich bewezen als een developer-vriendelijke game engine, met een eerlijk licentiemodel,
en ontwikkeld volgens het "build once, deploy anywhere" principe. Nu wordt het gebruikt door
miljoenen developers wereldwijd, die er jaarlijks duizenden games en applicaties mee ontwikkelen.
Unity3D heeft zich afgelopen jaren ook naar andere sectoren vertakt, zoals de animatie-, auto- en de
bouw- & constructiesectoren. Daarmee heeft Unity3D een complete ontwikkeloplossing voor
interactieve 3D-toepassingen. Deze uitbreiding heeft voor veel nieuwe gebruikers en hernieuwde
interesse in de engine gezorgd.

Het is ons opgevallen dat veel organisaties die met AR/VR of 3D-visualisaties van hun data
experimenteren, voor Unity3D kiezen. De toepassing van Unity3D buiten de traditionele game-
omgeving, en de toenemende noodzaak om 3D-data te visualiseren, heeft ons overgehaald om
Unity3D in onze tech radar van dit voorjaar toe te voegen. Als je als organisatie aan het innoveren bent
met 3D-data, of oplossingen zoekt voor om jouw AR/VR-concepten tot leven te brengen, dan is Unity3D
zeker een goede keus.

© 2022 JDriven Tech Radar: Talen & frameworks | 4




F#

ASSESS

Java krijgt steeds meer mogelijkheden om functioneel te programmeren (FP). Lambdas, records en
sealed classes zijn de laatste jaren aan de taal toegevoegd. Pattern matching, een techniek voor het
herkennen van een specifiek patroon in data, is op dit moment in ontwikkeling. Door ook te kijken naar
volledig functionele talen, wordt het gemakkelijker om de FP-concepten erachter beter te begrijpen.

Een taal die hier uitermate geschikt voor is, is F# [https://fsharp.org/], een taal die draait op de .NET
runtime. F# is een strongly typed programmeertaal, waar zowel functionele, imperatieve en
objectgeoriénteerde programmeermethoden gemakkelijk gecombineerd kunnen worden. Doordat de
syntax erg compact en eenvoudig is, kan men snel aan de slag met de features die de taal biedt. FP-
begrippen als pure (higher order) functions, immutability, currying, pattern matching, recursiviteit,
algebraische datatypes, tail-call optimization, lazy evaluation, tuples en types zijn basiselementen
binnen de taal. Omdat al deze opties in de taal zelf opgenomen zijn, kun je sneller begrijpen wat de
achterliggende concepten zijn.

Laten we dit toelichten aan de hand van het volgende voorbeeld. De welbekende functie om de reeks
van Fibonacci te berekenen kan in F# als volgt geschreven worden:

let fibn =
let rec I oop accl acc2 n =
match n with

| 0 -> accl

| 1 -> acc2

| _ ->1loop acc2 (accl + acc2) (n - 1)
loop 0 1 n

printfn "%" (fib 33) // output: 3524578

De fi b functie definieert een inner recursieve | oop functie om de berekening te doen. Deze functie
gebruikt weer pattern matching om te bepalen of de | oop functie nogmaals moet worden
aangesproken. Als laatste gebruikt de compiler tail-call optimization om de recursieve | oop functie
om te zetten naar een for-loop. Met enkele regels code zijn al drie FP-begrippen aan bod gekomen!

De toepasbaarheid van non-JVM talen is binnen de JVM-community wellicht klein. Het zal echter
gemakkelijker worden om nieuwe features in Java zoals volledige pattern matching (JEP 433
[https://openjdk.org/jeps/433]), efficiénter maken van tail-calls (Project Loom [http://cropenjdk.java.net/
~rpressler/loom/Loom-Proposal.html]), lazy static fields (JEP draft [https://openjdk.org/jeps/8209964]) en Value
Objects (JEP draft [https://openjdk.org/jeps/8277163]) te gaan gebruiken. Om die reden bevelen wij F# aan
als taal om functioneel programmeren te leren kennen.

© 2022 JDriven Tech Radar: Talen & frameworks | 5

Commit. Develop. Share.

N



https://fsharp.org/
https://openjdk.org/jeps/433
http://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://openjdk.org/jeps/8209964
https://openjdk.org/jeps/8277163

g

ASSESS

Threads zijn kostbare, maar ook dure resources. Dit principe zie je tegenwoordig weer vaak
terugkomen. Reactive systemen werken bijvoorbeeld zoveel mogelijk non-blocking, en Javascript kan
single-threaded draaien, maar toch meerdere dingen tegelijk doen. De 'threads' die in deze gevallen
de taken uitvoeren, mappen in dat geval niet 1-op-1 op de OS-threads onder de motorkap. Daarom
wordt in dit geval vaak gesproken over Virtual Threads, of Fibers ('vezels', kleinere threads).

Dit concept om threads efficiénter te gebruiken door deze meerdere taken 'tegelijk' te laten uitvoeren
is niet nieuw. Vroege versies van macOS en Windows maakten al gebruik van zogeheten cooperative
(non-preemptive) multitasking, waarbij meerdere processen/taken op een beperkt aantal threads
konden draaien door elkaar periodiek de ruimte te geven.

De afgelopen jaren zijn er meerdere reactive libraries uitgekomen (zoals RxJs, RxJava, Project
Reactor), die dit principe weer een nieuw leven hebben ingeblazen. Daar bovenop hebben de grote
framework-ontwikkelaars deze libraries omarmd en allerlei 'reactive' functionaliteiten toegevoegd
(Reactive Spring, Quarkus, enz).

Ook Kotlin heeft met de Coroutines library een bijna native manier ontwikkeld om meerdere taken
concurrent op een beperkt aantal threads uit te kunnen voeren. Bijna native, omdat deze library, net
als de andere reactive Java-libraries, in essentie nog gewoon op een 'traditionele’ JVYM draaien die met
normale OS-threads werkt.

Met Project Loom (JEP 425, beschikbaar in Java 19 als Preview feature) wordt het concept van Virtual
threads in de JVM geimplementeerd. Het zal de komende tijd interessant zijn om te zien hoe de
ontwikkelaars van de eerdergenoemde talen en frameworks hierop zullen inspelen. Naar onze
verwachting zullen zij vooral gebaat zijn met deze ontwikkeling. Native ondersteuning voor Virtual
Threads kan vooral op het gebied van performance een positieve bijdrage leveren, aangezien de
ondersteuning hiervoor nu niet meer bovenop de JVM hoeft te worden gebouwd, maar aangeboden
wordt vanuit de JVM zelf, dus op een lager abstractieniveau. Deze positieve ontwikkeling kan een
reden zijn om alvast de mogelijkheden te bekijken op het viak van Virtual Threads, Coroutines, en
reactive programming.

© 2022 JDriven Tech Radar: Talen & frameworks | 6




Technieken

ADOPT TRIAL ASSESS HOLD ADOPT

23, Testing diamond

& 24, Tinkering

& TRIAL
& @ 25. Lowcode

26. Mob Programming

& 27.SBOM

28. WebAuthn
@ @ 29. Weighing developer experience

@ ASSESS

30. Data Oriented Programming
31. Linked data
32. Risk storming

é HOLD

33. SAFe

Testing diamond

ADOPT

Om het testen van software naar een hoger niveau te tillen wordt vaak gekozen voor het groeperen
van verschillende soorten testen. Een veelgebruikte onderverdeling is in de volgende drie categorieén:

* Ul- en end-to-end testen
* Integratietesten

» Unittesten

In een traditionele software-omgeving ligt de focus op het testen van de units; daarna volgen de
integratietesten en als laatste de Ul-testen. Vaak wordt dat weergeven in een piramidevorm. De
belangrijkste testen vormen de voet van de piramide, de andere testen vullen de tweede laag en de
top. Het gebruik van de 'testpiramide' is een goede manier om monolieten door te testen.

In het huidige software-landschap is het gebruik van de testpiramide echter niet toereikend, doordat
er vaak gebruikgemaakt wordt van meerdere microservices. De eerdergenoemde groeperingen zijn
echter nog steeds relevant, maar een goede werking van de onderlinge verhouding tussen de services
is van groter belang dan de afzonderlijke units. Wanneer je dit uittekent, verandert de piramide naar
een andere vorm: de diamant. Vanuit dat oogpunt zijn de integratietesten nu het hart van je test suites,
de andere testgroepen zijn secundair. De 'testdiamant’ is daarom een uitstekende methode om
complexe multi-service architecturen testbaar te maken.

© 2022 JDriven Tech Radar: Technieken | 7

Commit. Develop. Share.

N




ADOPT

Tinkering is experimenteren met idee&n/frameworks in een omgeving om de volledige eigenschappen
te begrijpen. Leren door middel van tinkering is gebaseerd op

[https://tomcools.be/talks/]. In de IT-sector blijven we leren omdat sommige technologieén verdwijnen en
nieuwe technologieén verschijnen. Tinkering maakt het mogelijk om gestructureerd te leren, kennis te
vergroten en vaardigheden aan te scherpen.

Het belangrijkste aspect is door alleen het juiste te leren. Als we in een nieuw onderwerp duiken kan
het best overweldigend zijn, daarom moeten we onszelf beperken in wat we willen leren. We kunnen
hiervoor de "zones of proximal development" gebruiken. Deze bestaat uit drie zones: wat we al weten,
wat we kunnen leren en wat we niet kunnen leren. Stel dat we een nieuw framework geschreven in
Java/Kotlin willen leren. We kennen al Java, maar geen Kotlin, dus wat we al weten is Java. Dan
kunnen we leren om het framework in Java te gebruiken. En wat we niet tegelijk kunnen leren is Kotlin.
Op het moment dat we weten hoe het framework in Java werkt, kunnen we de volgende stap nemen,
maar we moeten niet alles in één keer leren.

In onze industrie verschijnen en verdwijnen regelmatig frameworks, maar meestal zijn deze gebaseerd
op algemene concepten. Het leren van deze concepten is belangrijk, omdat het dan makkelijker is om
nieuwe frameworks te leren. Concepten veranderen niet zo vaak als technologieén. Voorbeeld van
concepten zijn object-georiénteerd programmeren, domain driven design en design patterns.

Het delen van wat we hebben geleerd is een goede gewoonte. Als we willen uitleggen wat we hebben
geleerd aan anderen moeten we een goed begrip hebben over een onderwerp. Het dwingt ons om
alvast na te denken over vragen die mensen kunnen hebben, en daarop de antwoorden te hebben.

Tinkering is erg bruikbaar om met focus iets nieuws te leren, zodat we meer kennis krijgen en onze
vaardigheden verbeteren.

TRIAL

Middels een low- of een no-code platform kunnen businessgebruikers applicaties ontwikkelen zonder
te coderen. Het “programmeren” gaat met de hulp van user interfaces om processen en bronnen aan
elkaar te modelleren. Bij een no-code platform wordt alles via de user interface gedaan. Bij een low-
code platform is het wel mogelijk om code toe te voegen om het doel te bereiken.

Low-code en ook no-code platformen zitten in de lift en vormen een mogelijke oplossing voor de
groeiende vraag naar ICT-oplossingen en het gebrek aan software engineers.

De voordelen van het gebruik van deze platformen zitten in tijd en beschikbaarheid van schaarse
resources zoals programmeurs.

Het gebruik van deze platformen heeft ook nadelen. Zo zit je vast aan de betreffende vendor die het
platform levert en is de functionaliteit die je kan realiseren beperkt door de grenzen van wat het
platform kan leveren. Ook de integratie met externe systemen kan lastig zijn, zeker wanneer er niet
over een standaardprotocol gecommuniceerd wordt. Bovendien moet je je er als bedrijf bewust van
zijn dat wanneer er eenmaal voor een platform gekozen is, het lastig is om te migreren naar een
andere oplossing.

Low-code en no-code platformen zijn geschikt om snel een MVP op te leveren. Belangrijk hierbij is dat
de processen die geautomatiseerd worden relatief simpel zijn en weinig afhankelijkheden hebben.
Wanneer je zelf aan de slag wilt met een low-code platform lees dan ook dit
[https://www.thoughtworks.com/insights/articles/making_case_low-code_platforms] van Thoughtworks.

© 2022 JDriven Tech Radar: Technieken | 8



https://tomcools.be/talks/
https://www.thoughtworks.com/insights/articles/making_case_low-code_platforms

Mob Programming

TRIAL

Mob Programming [https://en.wikipedia.org/wiki/Mob_programming] is een extremere vorm van pair
programming waarbij het hele team tegelijk aan dezelfde feature werkt. Tijdens het mob programmen
is er één driver achter het toetsenbord en de rest van het team geeft de driver instructies.

Hoewel dit op het eerste gezicht inefficiént lijkt zijn wij van mening dat het ook enkele voordelen biedt:

+ Kennisdeling; Doordat het hele team ermee bezig is, is de kennis goed verdeeld
* Training; Junioren krijgen veel ondersteuning op deze manier
« Geen review meer nodig

» Meerdere perspectieven

Hoewel het niet voor ieder team of probleem zal werken hebben wij er in de praktijk goede ervaringen
mee.

SBOM

TRIAL

Een Software Bill of Materials (SBOM) is een definitie van softwareafhankelijkheden vastgelegd op één
centrale plek. In deze SBOM staan dalle afhankelijkheden van derden met bijbehorende exacte
versienummers gespecificeerd. Het helpt teams om snel inzicht te verschaffen van alle
afhankelijkheden. Daarnaast geeft het de mogelijkheid om snel de versies van deze afhankelijkheden
bij te werken.

Bij grote kwetsbaarheden is het zaak acuut en adequaat te handelen. Je wilt snel in kaart hebben of je
eigen software kwetsbaar is. Een SBOM maakt dat mogelijk.

Thoughtworks heeft de SBOM op de technology radar staan onder SBOM [https://www.thoughtworks.com/
rddor/techniques?blipid=202110076].

WebAuthn

TRIAL

Web Authentication APl (ook wel WebAuthn [https://webauthn.guide] genoed) is een specificatie
geschreven door W3C en FIDO in samenwerking met Google, Mozilla, Microsoft, Yubico en andere
bedrijven. De APl maakt het mogelijk om gebruikers te registreren en authenticeren met behulp van
public key cryptografie in plaats van een wachtwoord.

De grote belofte van WebAuthn is authenticatie zonder een wachtwoord. Wachtwoorden zijn niet een
veilige optie voor beveiliging. Als hackers ons wachtwoord stelen kunnen ze het zonder probleem
gebruiken en zich voordoen als ons. WebAuthn gebruikt public key cryptografie waarbij de public key
wordt bewaard op de server waarvoor we ons willen authenticeren. De private key wordt beveiligd
opgeslagen op onze laptop of telefoon. Om de private key weer te ontsleutelen moeten we
biometrische eigenschappen gebruiken zoals een vingerafdruk of een gezichtsscan. Dit betekent dat
authenticatie nu gedaan wordt met iets dat we zijn (vingerafdruk of gezichtsscan) en iets dat we
hebben (telefoon of computer).

Elke grote webbrowser heeft support voor WebAuthn, waardoor het nu al bruikbaar is als
authenticatie-optie voor gebruikers. Verschillende besturingssystemen (iOS, Android, Windows,
macOS) hebben al ondersteuning waardoor we bijvoorbeeld touch ID op MacBooks en

© 2022 JDriven Tech Radar: Technieken | 9

Commit. Develop. Share.

N



https://en.wikipedia.org/wiki/Mob_programming
https://www.thoughtworks.com/radar/techniques?blipid=202110076
https://webauthn.guide

gezichtsherkenning en vingerafdrukherkenning op PC’s kunnen gebruiken. Authenticatieproviders
zoals Keycloak bieden ook standaard ondersteuning voor WebAuthn.

Een nadeel is dat iedere website nog wel een andere manier heeft om de public key te kunnen
registeren voor de gebruiker. Hierdoor is er voor de gebruiker niet een standaardmanier om dit te
kunnen doen. Het zou mooi zijn als in de toekomst dit meer gestroomlijnd is.

Niets houdt ons tegen WebAuthn voor authenticatie te gebruiken in onze webapplicatie. We kunnen
WebAuthn gebruiken als 2-factor authenticatie in het authenticatieproces of meteen daadwerkelijk
inloggen zonder wachtwoord aan te bieden.

TRIAL

Laten we beginnen met een definitie van developer experience en wat hiermee bedoeld wordt.
Developer experience, ook wel DX genoemd, beschrijft de perceptie en het gevoel dat ontwikkelaars
hebben bij een taal, een tool of een techniek. Hoe beter de ontwikkelaar in staat is om met behulp van
de taal, tool of techniek zijn werk te doen, hoe beter zijn gevoel hierbij is. Hierbij let een ontwikkelaar
over het algemeen op drie elementen: gebruiksvriendelijkheid, gebruiksgemak en betrouwbaarheid.
Gebruiksvriendelijkheid gaat over hoe eenvoudig de taal, tool of techniek is in het gebruik.
Gebruiksgemak gaat over hoe makkelijk de functionaliteiten te vinden zijn. Het derde punt gaat over
hoeveel vertrouwen je hebt in het gebruik van de taal, tool of techniek.

Waarom is DX van belang?

Wanneer de DX van een taal, tool of techniek hoog is, zal het betreffende indivudu of het team snel
geneigd zijn hier nogmaals voor te kiezen. Het is dus van groot belang voor de ontwikkelaars van een
taal, tool of techniek de juiste aandacht en focus te hebben op DX.

Een hoge DX begint met het centraal stellen van de ontwikkelaar en je kunnen verplaatsen in de
eindgebruiker.

ASSESS

Data oriented programming is een paradigma dat zich focust op data en datatransformaties. Het
data oriented programming paradigma is niet iets nieuws, het wordt al jaren toegepast in talen zoals
C en Clojure. Belangrijk is dat het geen alternatief is op object-georiénteerd programmeren maar een
toevoeging hierop, ze zijn namelijk erg goed in combinatie te gebruiken.

Binnen data oriented programming paradigma is data de kern, maar wat wordt hier nu mee bedoeld?
Als je abstract kijkt naar de meeste applicaties dan bestaan ze uit een keten van datatransformaties.
Binnen data oriented talen wordt hierop ingezet door voornamelijk datastructuren als de HashMap in
te zetten om data in op te slaan, omdat deze makkelijk te transformeren is vanwege de uitgebreide
Map API.

Java krijgt steeds meer features om [https://www.infoq.com/articles/data-
oriented-programming-java/] te ondersteunen. Hierbij worden nog steeds types in plaats van “"HashMap™s
gebruikt, maar er worden wel constructies toegevoegd om meer concepten van data oriented
programming toe te passen. Om die reden zijn records, sealed classes en pattern matching aan de
taal toegevoegd. Deze constructies geven de mogelijkheid om data te scheiden van functionaliteit, wat
een groot onderdeel van data oriented programming is.

© 2022 JDriven Tech Radar: Technieken | 10



https://www.infoq.com/articles/data-oriented-programming-java/

Linked data

ASSESS

Linked Data is een techniek waarbij data aan elkaar gekoppeld en geinterpreteerd kan worden zonder
dat de data verplaatst hoeft te worden. Met Linked Data bouw je een gestructureerd netwerk op van je
data, en dat kan dan gebruikt worden voor rijkere analyses, en om makkelijker je data, met context, te
delen.

In academische kringen gaat de term 'Linked Data' al jaren rond. Alleen is er de afgelopen tijd een
toegenomen interesse voor de techniek, en is Linked Data het academische perspectief ontstegen. De
technologie ontwikkelt zich razendsnel door. Dat komt doordat er allerlei standaarden zijn
gedefinieerd om basiszaken te beschrijven. Zulke standaarden beschrijven bijvoorbeeld hoe je een
adres kan beschrijven en interpreteren.

Dankszij de inmiddels volwassen standaardisatie is Linked Data makkelijker toe te passen. Het Kadaster
stelt bijvoorbeeld publieke Linked Data endpoints beschikbaar zodat je hun datasets aan elkaar kunt
verbinden. Als je aan het onderzoeken bent hoe je je data kunt opslaan op een manier die makkelijk
interpreteerbaar is voor machines, en die ook gekoppeld kan worden aan andere datasets, dan stellen
wij voor om Linked Data uit te proberen.

Risk storming

ASSESS

Bij het implementeren van oplossingen voor business requirements kan het gebeuren dat developers
structureel onderwerpen, architectuurvraagstukken, of code mijden. Het kan komen door technical
debt, maar vaker is het een kwestie van onzekerheid; een soort fear driven development. Het is
belangrijk om zulke situaties te herkennen en erkennen, en vervolgens een plan te maken om het te
adresseren.

Een naam voor deze bezigheid die in zwang lijkt te raken is Risk Storming. Hierbij doe je op diverse
niveaus van je softwaresystemen - van een enkele Java class binnen een applicatie tot het totale
landschap van interacterende services - een analyse van de 'hot spots' om tot een overzicht te komen
van waar developers een risico ervaren. Denk aan plaatsen waar de business requirements onbekend
zijn en slechts uit de oplossing afgeleid kunnen worden, of een technische oplossing die zelf
onvoldoende begrepen wordt. Maar ook als er een zorg bestaat over een onderbelicht aspect als
security, compliance, onderhoudbaarheid of uitbreidbaarheid. Het is dus breder, of nader
gedefinieerd, dan technical debt. En het kan in zowel greenfield- als brownfield-projecten voorkomen.

Eenmaal geidentificeerd is het zaak om het risico van het niet wegnemen van de zorgen rondom deze
hot spots te kwantificeren, en het wegnemen in te plannen in lijn met werk aan de value streams waar
een team zich om bekommert. Dat deze risicoanalyse op diverse detailniveaus van een
softwareoplossing kan worden gedaan, sluit aan bij het Cit+-model van Simon Brown. Simon Brown
heeft zelf dan ook een aanpak voor risk storming geinitieerd, die hij toepasselijk op
https://riskstorming.com/ beschrijft, en die de moeite waard lijkt om als concrete invulling van
bovengenoemde activiteiten uit te proberen.

© 2022 JDriven Tech Radar: Technieken | 11

Commit. Develop. Share.

N



https://riskstorming.com/

g

HOLD

Scaled Agile Framework (SAFe] is een samenstelling van organisatiestructuren en processtructuren
met als doel om lean en agile toepassingen schaalbaar te maken. Schaalbaarheid van deze principes
betekent prioriteit geven aan het verbeteren van samenwerking tussen alle groepen in de organisatie.
SAFe is effectief in het creéren van bewustwording over best practices binnen grote organisaties. Uit
onze ervaring blijkt dat SAFe vaak uitmondt in het uitrollen van talrijke nieuwe processen die de
effectiviteit van ontwikkelteams in de weg staan.

Een voorbeeld van een nieuw proces is Program Increment (PI) planning-evenementen. Een planning-
evenement heeft als doel om samenwerking en communicatie tussen teams aan te moedigen. Er wordt
daardoor een verwachting gecreéerd dat een planning-evenement nodig is om effectiviteit te
bewaken, terwijl flexibele, spontane communicatie tussen teams hetzelfde kan bereiken.

We zien dat bedrijven de belofte van SAFe van betere Lean en Agile processen omarmen. Doordat SAFe
als totaaloplossing wordt gezien, is het makkelijk om te vergeten dat SAFe grote veranderingen vereist,
ook op bestuurlijk niveau. Er wordt dan eerst gestuurd op het introduceren van nieuwe SAFe
processen, voordat duidelijk is of de hele organisatie er klaar voor is. Dit leidt tot een situatie waar er
gebrek is aan team buy-in op de veranderingen. Onderliggende organisatorische en bedrijfsculturele
problemen worden meestal niet opgelost.

© 2022 JDriven Tech Radar: Technieken | 12




Platforms

TRIAL HOLD ASSESS TRIAL ADOPT

21. Graalvm

ASSESS @

20. On-premise

HOLD

22. CircleCl

GraalVM

TRIAL

GraalVM [https://www.graalvm.org/] is een "high-performance” JDK, ontworpen om de uitvoering van
toepassingen geschreven in Java en andere JVM-talen te versnellen, terwijl het ook runtimes biedt voor
JavaScript, Python, en een aantal andere populaire talen via polyglot-technologieén. Om native
executables te maken bevat het de ahead-of-time (AOT) compiler.

Dit is nu onderdeel van OpenJDK [https://www.graalvm.org/2022/openjdk-announcement/]. Belangrijk is wel
te weten dat de polyglot-technologieén geen onderdeel zijn van OpenJDK, maar waarschijnlijk wel zijn
te gebruiken. Inmiddels is support voor native executables beschikbaar voor alle grote frameworks.
Hierdoor is de drempel om GraalVM te gebruiken een stuk lager geworden, vooral met gebruik van
third party libraries met de Shared Metadata [https://medium.com/graalvm/enhancing-3rd-party-library-
support-in-graaIvm-nqtive-imoge-with-shcred-metcdata-?eece1651dcl}].

In trial om native executables te gebruiken met de kanttekening dat het niet voor elk project past qua
toepassing. Het is een afweging tussen aan de ene kant snellere opstarttijiden en minder
geheugengebruik, maar aan de andere kant een lagere throughput.

On-premise
ASSESS

Heroverweging van cloud versus On-premise [https://world.hey.com/dhh/why-we-re-leaving-the-cloud-
654b47e0].

Het is ruim 15 jaar geleden dat we voor het eerst kennis maakten met de Cloud. Met grote beloftes en
gelikte marketingpraat werden zowel managers als technici overgehaald om over te stappen. Hoe kon
je de beloofde kostenbesparingen negeren? Of de reductie in werk en gemak van gebruik ten opzichte
van eigen servers?

© 2022 JDriven Tech Radar: Platforms | 13

Commit. Develop. Share.

N



https://www.graalvm.org/
https://www.graalvm.org/2022/openjdk-announcement/
https://medium.com/graalvm/enhancing-3rd-party-library-support-in-graalvm-native-image-with-shared-metadata-9eeae1651da4
https://world.hey.com/dhh/why-we-re-leaving-the-cloud-654b47e0

In deze begindagen wist nog niemand wat deze, voor het merendeel onbewezen, nieuwe techniek echt
zou gaan brengen en hebben we veel verhuisd naar een Cloud-infrastructuur. Nu, ruim 15 jaar later,
hebben we een goed idee van wat de krachten zijn van de Cloud, maar hebben we relatief weinig
stilgestaan bij de zwaktes.

Hoge kosten

Hoewel een groot deel van de hoge kosten die bedrijven ervaren veroorzaakt worden door een slechte
inrichting, zijn ook goede, optimaal ingerichte Cloud-infrastructuren kostbaar. Dit is vooral bij
inrichtingen waar geen van de krachtige punten van de Cloud worden ingezet. Hier kan het weg
migreren van de Cloud kostenbesparing opleveren, die snel kan oplopen en in enkele gevallen meer
dan de helft aan kosten kan schelen. Globaal hebben de volgende scenario’s vooral baat bij de Cloud:

* Kleine applicaties die maar spaarzaam worden gebruikt. Dit omdat de kosten van de Cloud
schalen op een manier die een on-premise oplossing niet kan. Zeker wanneer er wordt
geoptimaliseerd naar een serverless implementatie.

« Applicaties met sterk wisselend gebruik. De toegang tot een bijna eindeloze "stand-by"
infrastructuur die een Cloud provider kan bieden zorgt voor goede performance en voorkomt
downtime die niet kosteneffectief ge€venaard kan worden in een eigen datacenter.

* Applicaties die een hoge bereikbaarheid nodig hebben. De grote reservecapaciteit van een
Cloud provider met standaard ingeregelde failovers die zelfs land- en continent-overschrijdend
kunnen zijn is hierin ongeévenaard.

Daarentegen heeft on-premise ook globaal gezien zijn voordeel scenario’s:

* Applicaties met zeer vast gebruik. Als een applicatie vrijwel altijd dezelfde hoeveelheid
resources nodig heeft en nauwelijks fluctuatie vertoont, ligt ook de noodzakelijke infrastructuur-
hoeveelheid vast. Net als in de echte wereld is dan huren duurder dan kopen.

Hoge complexiteit

Bij de introductie van de Cloud is een van de grote verkooppunten een veel eenvoudiger gebruik (ten
opzichte van on-premise) geweest. Nu was dat in de begintijd misschien wel waar, maar is met de
toevoeging van vele nieuwe tussenliggende services en de groei van bestaande services naar
volwaardige volwassen services de complexiteit zo ver toegenomen, dat het minimaal net zo veel
expertise is gaan eisen als van de (oude) on-premise infrastructuur.

Betrouwbaarheid Cloud-aanbieder

De markt voor Cloud-infrastructuuraanbieders is klein. In korte tijd na de introductie lag AWS zo ver
voor op de concurrentie dat het grootste deel van de markt gebruik maakt van deze diensten.
Concurrentie heeft dit inmiddels bijgebeend, maar de aanbieders van Cloud-infrastructuren (die waar
90% van de Cloud afnemers gebruik van maken) zijn letterlijk op &én hand te tellen. Dit heeft een
nieuwe, internetbrede, single-point-of-failure geintroduceerd waardoor een storing bij één Cloud-
provider ervoor kan zorgen dat een groot deel van het internet onbereikbaar is geworden.

On-premise

Het is belangrijk om af te stappen van de automatische gedachte om nieuwe projecten onmiddellijk in
de Cloud te zetten, en weer serieuze kosten- en technische overwegingen te nemen. Zeker omdat, net
als de ontwikkelingen in de Cloud, de ontwikkelingen van on-premise applicaties niet stil heeft
gestaan. Platformen als OpenShift en Docker geven eenzelfde niveau van gemak bij het inrichten
buiten de Cloud.

Elk project heeft er baat bij om, naast de vele overwegingen voor de inzet van de beste
ontwikkeltechnieken, ook dezelfde hoeveelheid overweging te geven aan de infrastructuur waarop
deze wordt uitgerold.

© 2022 JDriven Tech Radar: Platforms | 14




CircleClI

HOLD

CircleCl [https://circleci.com/] is een Continuous Integration en Continuous Deployment (CI/CD) cloud
platform waarmee automatisch software gecompileerd, getest en gedeployed kan worden. CircleCl
ondersteunt zeer complexe build pipelines op meerdere besturingssystemen (Linux, macOS en
Windows) en hardware platforms (0.a. x86_64 en ARM).

Via integraties met onder andere GitHub, GitLab en Bitbucket kan automatisch bij elke commit een
nieuwe build worden gestart. Builds draaien binnen Docker containers en pipelines worden
geconfigureerd met een YAML file binnen de Git repository van een project.

Hoewel CircleCl een prima tool is, biedt het voor de meeste projecten weinig tot geen toegevoegde
waarde boven tools als GitHub Actions, GitLab CI en Bitbucket Pipelines, terwijl er wel extra kosten
aan verbonden zijn. Pas als een pipeline van een project baat heeft bij een hoge mate van
parallellisatie of wanneer builds op verschillende (hardware) platforms nodig zijn, raden wij aan om
naar CircleCl te kijken.

© 2022 JDriven Tech Radar: Platforms | 15

Commit. Develop. Share.

N



https://circleci.com/

ADOPT

15. CNCF Trailmap
16. Datafaker

17. Renovate

18. Spotless

TRIAL

6. Error Prone Support
7. Gradle Kotlin DSL

8. Kustomize

9. OpenTelemetry

10. Spring Boot Migrator

ASSESS

11. Diffblue Cover
12. GitHub co-pilot
13. Maven Daemon
14. SigNoz

HOLD ASSESS TRIAL ADOPT

ADOPT

De Cloud Native Computing Foundation (CNCF) is opgericht in 2015 en houdt zich sindsdien bezig
met container- en cloud-technologie. Onder andere Kubernetes en Helm vallen onder de opensource-
projecten van de CNCF. Naast de vele projecten ontwikkelt de CNCF ook tools om projecten te helpen
met Cloud Native development, biedt de organisatie cursussen en certificeringen aan en organiseert
events.

De CNCF houdt een [https://landscape.cncf.io/] bij van tools gerelateerd aan Cloud Native
Development gesorteerd op onderwerp. Daarnaast heeft de CNCF de
[https://github.com/cncf/trailmap] ontwikkeld [

] De Trailmap (eventueel aangevuld met het landschap) kan helpen bij het
ontwikkelen van een Cloud Native Strategy.

De Trailmap geeft een goed overzicht van de route die leidt van een on-prem monoliet naar een Cloud
Native applicatie. Zoals met iedere Trail gaat het niet zozeer om de bestemming, maar meer om de
reis. De Trailmap is een handige tool om het gesprek over de Cloud strategy te voeren. Binnen teams
kan de tool helpen om te bepalen waar een project staat, waar het zou moeten staan en hoe het
project daar kan komen. Binnen de organisatie kan de Trailmap helpen om de juiste tools en
technieken te selecteren om projecten optimaal te ondersteunen.

© 2022 JDriven Tech Radar: Tools | 16



https://landscape.cncf.io/
https://github.com/cncf/trailmap
https://github.com/cncf/trailmap/blob/master/CNCF_TrailMap_latest.pdf
https://github.com/cncf/trailmap/blob/master/CNCF_TrailMap_latest.pdf

Datafaker

ADOPT

Datafaker [https://www.datafakernet] is een Java/Kotlin library om testgegevens te genereren die eruit
zien als echte gegevens. Met Datafaker kunnen we makkelijk namen, adressen, telefoonnummers,
creditcardnummers, medische gegevens, maar ook "lichtere" gegevens zoals de namen van karakters
uit Star Wars of uitspraken uit de Back to the Future film genereren. Het gebruik van Datafaker heeft
een aantal voordelen:

1. Er zijn geen problemen dat de gegevens herleidbaar zijn naar persoonlijk identificeerbare
gegevens. Alle gegevens zijn gegenereerd en niet gebaseerd op echte gegevens, dus het kan
geen persoonlijke gegevens bevatten. Een alternatief zou kunnen zijn het gebruik van
geanonimiseerde gegevens. Maar als het proces van anonimiseren niet goed is
geimplementeerd kunnen nog steeds gegevens herleidbaar zijn.

2. Het is heel makkelijk om een ongelimiteerde set van gegevens te maken. We moeten alleen
aangeven hoeveel gegevens we willen en Datafaker zal de data genereren.

3. De gegenereerde gegevens kunnen locale-specifiek zijn. Datafaker maakt het mogelijk om
gegevens te genereren voor een locale. Namen kunnen bijvoorbeeld worden gegenereerd aan
de hand van een Nederlandse locale, maar ook voor een Arabische locale. Hierdoor is het
mogelijk om gegevens te gebruiken voor het testen van onze code, waar we normaal gesproken
niet snel zelf zouden achterkomen.

We kunnen Datafaker inzetten in onze unittesten als we willekeurige waarden willen gebruiken om
onze productiecode te testen en waarbij de willekeurige waarden wel een betekenis hebben. Als we
bijvoorbeeld een methode hebben die een argumentnaam heeft met type St ri ng, dan zouden we dat
kunnen testen met een waarde van allemaal willekeurige karakters. Maar het heeft meer betekenis als
we willekeurige namen kunnen gebruiken en daar gebruiken we Datafaker voor. Datafaker hoeft niet
alleen voor unittesten gebruikt te worden, maar we kunnen het ook gebruiken om CSV, JSON, SOL,
YAML en XML bestanden te genereren.

We kunnen Datafaker zelf ook uitbreiden met "custom providers". Deze providers zijn verantwoordelijk
voor het genereren van willekeurige waarden vanuit een set van vaste waarden. Dus als we een
provider missen die Datafaker nog niet heeft, dan kunnen we deze zelf schrijven en gebruiken.

Renovate

ADOPT

Renovate [https://docs.renovatebot.com/] is een opensource-tool voor het automatiseren van dependency
updates, vergelijkbaar met Dependabot welke we al in het voorjaar van 2020 behandelden. Bovenop
wat we al gezien hebben van Dependabot, biedt Renovate ons een eenvoudige flow voor het oppikken
van nieuwe projecten, met minimale configuratie. Maar waar Renovate zich in onderscheidt, is de
officiéle ondersteuning voor meerdere platformen zoals Azure, BitBucket & GitLab. Dit maakt het een
aantrekkelijke optie voor iedereen die geen GitHub gebruikt, nadat Dependabot door GitHub is
opgekocht en geintegreerd.

Wij willen Renovate in het bijzonder uitlichten voor iedereen die geen GitHub gebruikt, om dezelfde
voordelen te genieten op andere platforms. Gegeven wat we het afgelopen jaar hebben gezien met
kwetsbaarheden met hoge gevoeligheid is er genoeg reden om bij te blijven, en automatisering helpt
ons daarbij.

© 2022 JDriven Tech Radar: Tools | 17

Commit. Develop. Share.

v



https://www.datafaker.net
https://docs.renovatebot.com/

ADOPT

[https://github.com/diffplug/spotless] is een tool voor het controleren (en toepassen) van code
formatting. Waar spotless zich in onderscheidt, is het feit dat het een build tool plugin is dat meerdere
talen ondersteunt. Hierdoor is het makkelijk te integreren in projecten en pipelines.

Om deze reden zien wij Spotless als een goede oplossing om discussies over code style & formatting
uit het team weg te nemen, zeker met de opkomst van meer diverse teams en ontwikkelomgevingen.

TRIAL

[https://error-prone.picnic.tech/] is een extensie vanuit Picnic voor Google’s Error
Prone statische analysetool. Het doel is de codekwaliteit binnen een project te verbeteren, onder
andere door het controleren van onderhoudbaarheid en consistentie, en het signaleren van
veelvoorkomende valkuilen. Error Prone is een plugin voor de Java compiler. Dit maakt snelle feedback
mogelijk om veelvoorkomende fouten op te sporen en te repareren. Refaster breidt de functionaliteit
verder uit en vervangt suboptimale codepatronen door een voorgeschreven optimale implementatie.
Error Prone support heeft bovendien ondersteuning voor Bug Patterns en Refaster regels voor Assertd,
Guava, Streams en andere veelgebruikte bibliotheken. Vooral de Refaster regels zijn welkom,
aangezien er al een tijd een [https://github.com/google/error-prone/issues/649] open staat waarin
Google verzocht wordt hun Refaster templates vrij te geven. De toevoegingen van Picnic reflecteren de
technologiekeuzes van Picnic, met duidelijke ideeén hoe oude code-patronen omgezet kunnen worden
naar nieuwe patronen. In de toekomst verwacht Error Prone Support prestaties te verbeteren en om
het makkelijker te maken Refaster templates te testen.

We waarderen het als bedrijven als Picnic een bijdrage leveren aan Open Source software. Hun
toevoegingen van bugchecks en Refaster templates maken het voor iedereen met dezelfde
technologie-stack mogelijk om hun code te verbeteren. We raden gebruikers aan om Error Prone
Support te proberen op projecten met een laag risico. Zo kunnen ontwikkelaars ervaring opdoen met
de voordelen en risico’s, voordat Error Prone Support voor grotere projecten wordt gebruikt.

TRIAL

Naast Maven is Gradle een build tool om applicaties en libraries te ontwikkelen. We gebruiken een
Domain Specific Language (DSL) om onze build te beschrijven in een build script. Deze DSL is
gebaseerd op de Java APl van Gradle. We kunnen ervoor kiezen om de DSL te schrijven in Groovy of
Kotlin. De code van het script wordt gecompileerd en dan uitgevoerd door Gradle. Traditioneel werd
alleen Groovy ondersteund, maar we krijgen een hoop voordelen als we de Kotlin variant kiezen:

1. Om te beginnen is Kotlin een statisch getypeerde taal, terwijl Groovy dynamisch getypeerd is.
Hierdoor krijgen we type-safe model accessors als we onze build scripts schrijven in Kotlin. Dit
betekent dat we code completion krijgen in onze IDE (voor nu ondersteunen IntelliJ IDEA en
Android Studio dit) als we ons build script schrijven. We krijgen voor Groovy build scripts soms
ook code completion in IntelliJ IDEA, maar dat is alleen voor bekende APIs en bijvoorbeeld niet
voor third-party plugins. Met Kotlin kan de IDE traditionele code completion bieden gebaseerd
op classes en is het niet afhankelijk van specifieke features. Hierdoor werkt code completion ook
voor third-party plugins.

2. Herstructuren, refactoring, van build scripts is nu ook makkelijker vanuit de IDE, want de IDE
kan typed code al refactoren. Voor de IDE is het build script nu een Kotlin source, dus alles wat
we normaal kunnen doen voor het refactoren van Kotlin-code kunnen we nu ook gebruiken voor

‘, © 2022 JDriven Tech Radar: Tools | 18



https://github.com/diffplug/spotless
https://error-prone.picnic.tech/
https://github.com/google/error-prone/issues/649

ons build script.

3. We kunnen gebruik maken van Kotlin-eigenschappen zoals delegated properties en null safety.
Omdat het build script is geschreven in Kotlin kunnen we alles gebruiken wat Kotlin heeft te
bieden. We kunnen bijvoorbeeld delegated properties gebruiken om een referentie te krijgen
naar een object dat we ook later in het build script willen gebruiken.

De Kotlin DSL is al goed bruikbaar in projecten die Gradle gebruiken. De developer experience voor het
schrijven van build scripts is beter, vooral als IntelliJ IDEA of Android Studio wordt gebruikt.

Kustomize

TRIAL

Kustomize [https://kustomize.io/] is een template engine voor Kubernetes configuraties. Het maakt het
mogelijk om een eenduidig declaratief systeem te gebruiken om de volledige configuratie te
specificeren voor meerdere deployment targets, zoals test, staging en productie. Kustomize doet dit
door middel van een systeem van lagen van templates, de overlays. Elke overlay heeft de mogelijkheid
de details van de laag erboven in te vullen of aan te passen. Het gebruik van Kustomize verenigt dit
templatesysteem voor de gehele applicatiecontext, en wordt zowel voor in-house tools als voor off-the-
shelf applicaties gebruikt. Bovendien is Kustomize volledig geintegreerd in de standaard Kubernetes
kubect| tool sinds versie 1.14. Dit maakt het gemakkelijk om Kustomize toe te passen in bestaande
systemen voor continuous deployment. Door zijn aard als templatesysteem komt de syntax van
Kustomize in hoge mate overeen met de reguliere Kubernetes configuratiebestanden.

Hoewel de templating syntax voor Kustomize af en toe gecompliceerd kan voorkomen, maakt de
gelaagde architectuur het eenvoudig om een reguliere Kubernetes configuratie stap-voor-stap aan te
passen aan Kustomize. Dit zorgt er ook voor dat het eenvoudiger is om overzicht te houden over de
verschillen in configuratie van de deployments. Omdat de reguliere Kubernetes configuratie (met wat
kleine aanpassingen) ook een correcte Kustomize configuratie is, zitten er weinig tot geen nadelen aan
het uitproberen van Kustomize.

OpenTelemetry

TRIAL

OpenTelemetry [https://opentelemetry.io/] beoogt een eenvoudige, universele, vendor-neutrale, loosely
coupled oplossing te zijn voor logging, metrics & tracing. Gesteund door de Cloud Native Compute
Foundation (CNCF) en de grote spelers in de observability-wereld, heeft dit goede kans op termijn
onze projecten te raken. Er zijn tools, API’'s en SDK’s beschikbaar in verschillende talen voor het
instrumenteren van applicaties, verzamelen van meetdata en om deze metrics, logs en traces te
exporteren. Daarmee wordt het mogelijk de performance en het gedrag van applicaties te analyseren
in een backend naar keuze.

Wij zien vooral de mogelijkheden om middels deze taal- en vendor-onafhankelijke standaard eindelijk
één oplossing te hebben die herhaaldelijk is toe te passen, ongeacht de lokale situatie. Voor Java is er
al een indrukwekkende set aan integraties met bestaande frameworks, waaronder een Java agent om
daar snel mee te kunnen starten.

Spring Boot Migrator
TRIAL

Spring Boot Migrator [https://github.com/spring-projects-experimental/spring-boot-migrator] (SBM) is bedoeld
voor ontwikkelaars om te helpen bij het migreren van applicaties naar Spring Boot, het upgraden van
bestaande Spring Boot-applicaties of het migreren van een applicatie om Spring Boot-features te
gebruiken.

© 2022 JDriven Tech Radar: Tools | 19

Commit. Develop. Share.

v



https://kustomize.io/
https://opentelemetry.io/
https://github.com/spring-projects-experimental/spring-boot-migrator

g

Het is een experimenteel Spring-project gemaakt door de ontwikkelaars van het Spring Framework zelf.
Met de release van Spring Boot 3 eind 2022 zou de Spring Boot Migrator uitermate nuttig kunnen zijn
voor applicaties. Het project gebruikt (deels) [https://docs.openrewrite.org] recipes voor het
migreren en bijwerken van de code.

Het project is in ontwikkeling en heeft momenteel nog enkele beperkingen. Bekijk het GitHub-project
om de werkelijk ondersteunde build-tools te zien (op dit moment alleen Maven).

Op dit moment zoekt het project early-adopters. Het wordt ondersteund door de Spring-ontwikkelaars
zelf en kan daarom een mooie trial zijn voor ontwikkelingsteams om zo ook feedback richting het
project te rapporteren.

ASSESS

[https://www.diffblue.com/products/] is in staat regressietest-suites aan te maken, die
meedraaien in de continuous integration pipeline. Deze regressietests bieden bescherming tegen
ongewenste effecten van code-aanpassingen, zodat deze sneller en eerder in het ontwikkelproces
worden gedetecteerd. Diffblue Cover’s Al-engine kan snel een suite aan tests afleiden uit bestaande
code, die een afspiegeling zijn van de huidige functionaliteit. Door het produceren van grote aantallen
unit-integratietests zit de waarde niet in individuele tests, maar in het vermogen van alle tests samen
om regressies op te sporen. De gegenereerde tests dekken een grote verscheidenheid aan scenario’s
af, waaronder uitzonderingsgevallen en raamwerk-code die anders gemist zou zijn (bewust of
onbewust) door ontwikkelaars.

Wij geloven dat tools als Diffblue Cover de potentie hebben het werk van een ontwikkelaar aan te
vullen. Door het repetitieve handwerk weg te nemen bij het testen van varianten, kan de ontwikkelaar
zich richten op de interessante gevallen. Het vermogen om regressies op te sporen kan van
onschatbare waarde zijn bij het werken met anderzijds slecht geteste code bases, of wanneer de
noodzaak bestaat snel en continu naar productie uit te rollen. Vergeleken met andere Al-code-
completion tools spreekt het ons aan dat Diffblue Cover lokaal draait. Maar daar staat tegenover dat
de plugin of CLlI-tool 5 GB in gebruik neemt, en redelijk aan de prijs is per developer.

ASSESS

[https://copilot.github.com/] is een codegeneratie-assistent en plugin aangedreven door
Codex, een nieuw Al-systeem van OpenAl. Door de Al getraind op code in publieke GitHub-repositories
is GitHub Copilot beter in het genereren van context-gerelateerde code dan andere code assistants.
Hierdoor kan het code of tekst genereren in elke context, zij het documentatie, commentaar, functies of
code.

Github Copilot stuurt een deel van de data in de huidige file naar de server, waar deze door
automatische processen wordt geanalyseerd en door de Al wordt gehaald voor suggesties. Alle
stappen worden opgeslagen voor toekomstige voorspellingen. Aangeraden wordt om voorzichtig om te
gaan met tool zoals deze.

Voorlopig is er geen license en worden gebruikers toegelaten op basis van een wachtlijst.

© 2022 JDriven Tech Radar: Tools | 20



https://docs.openrewrite.org
https://www.diffblue.com/products/
https://copilot.github.com/

Maven Daemon

ASSESS

Maven is een populaire build-tool voor het ontwikkelen van Java-applicaties. We kunnen Maven
Daemon [https://github.com/apache/maven-mvnd] gebruiken om onze builds sneller te maken. Maven
Daemon heeft verschillende eigenschappen die het mogelijk maken om de build te versnellen:

1. Bij de eerste keer opstarten wordt er een achtergrondproces gestart die de JVM draaiend
houdt. Dit betekent dat bij volgende builds de JVM niet meer opgestart hoeft te worden, maar
dat een al draaiende JVM gebruikt kan worden. Ook de Just-In-Time (JIT) optimalisaties worden
bewaard en kunnen opnieuw gebruikt worden voor volgende build-executies. De classloaders
van plugins worden gecachet, zodat ze maar één keer ingelezen hoeven te worden.

2. De standaardoptie bij het opstarten is dat de multithread-mode wordt gebruikt. Normaal
gesproken kunnen we Maven opstarten met de optie - T of --threads om de build met
parallelle threads te starten. Dit is een groot voordeel voor multimodule-projecten, want het
betekent dat de modules parallel gebouwd kunnen worden. De totale buildtijd wordt nu
bepaald door de module die de meeste tijd kost en niet meer de optelsom van de buildtijd van
alle modules. Om de logging overzichtelijk te houden zorgt Maven Daemon ervoor om alle
output van elke module bij te houden en de voortgang te tonen voor elke project op een eigen
regel. Als er tijdens de build een fout optreedt kunnen we nog steeds wel de complete logging
zien.

3. Maven Daemon is gebouwd met GraalVM en is een native executable die snel start.

Maven Daemon kan al gebruikt worden door individuele ontwikkelaars op hun projecten.

SigNoz
ASSESS

SigNoz [https://signoz.io/] is een open source APM (Application Performance Monitoring) voor metrics,
traces en logs. SigNoz is een mogelijk alternatief voor DataDog, NewRelic en Prometheus in
combinatie met Jaeger. Er zijn veel voordelen om metrics, traces en logs in een single pane te
combineren. Zo biedt het overzicht en zijn achterliggende relaties bij problemen makkelijker te
achterhalen. SigNoz is ook beschikbaar om zelf te hosten, dus ook geschikt voor systemen waarbij de
data niet naar buiten mag. Omdat SigNoz de standaard OpenTelemetry ondersteunt, kan een breed
scala aan talen worden gebruikt.

© 2022 JDriven Tech Radar: Tools | 21

Commit. Develop. Share.

N



https://github.com/apache/maven-mvnd
https://github.com/apache/maven-mvnd
https://signoz.io/

Commit.
Develop.
Share.




	JDriven Tech Radar Najaar 2022: Onze kijk op recente ontwikkelingen in het veld
	Introductie
	Tech Radar
	Indeling

	Talen & frameworks
	Kotlin coroutines
	Spring Modulith
	Unity3D
	F#
	Virtual threads

	Technieken
	Testing diamond
	Tinkering
	Low-code
	Mob Programming
	SBOM
	WebAuthn
	Weighing developer experience
	Data Oriented Programming
	Linked data
	Risk storming
	SAFe

	Platforms
	GraalVM
	On-premise
	CircleCI

	Tools
	CNCF Trailmap
	Datafaker
	Renovate
	Spotless
	Error Prone Support
	Gradle Kotlin DSL
	Kustomize
	OpenTelemetry
	Spring Boot Migrator
	Diffblue Cover
	GitHub copilot
	Maven Daemon
	SigNoz


